保有水平耐力計算法に基づく耐震構造として設計された 一層支持架構付きラチスドームの屋根部材2次設計用の構造特性係数評価 SEISMIC FORCE REDUCTION FACTOR EVALUATION OF DOUBLE-LAYERED DOMES SUPPORTED BY SINGLE STORY SUBSTRUCTURES

寺澤友貴^{*1},四條春奈^{*2},熊谷知彦^{*3},竹内 徽^{*4} Yuki TERAZAWA, Haruna SHIJO, Tomohiko KUMAGAI and Toru TAKEUCHI

This paper performed a series of nonlinear response history analyses (NLRHAs) for double-layered domes supported by single-story substructures to investigate the effect of the roof span L of 60m to 150m, yielding story drift ratio θ_{j} , yielding base shear coefficient C_{j} of 0.3 to 0.6, post-yielding stiffness ratio p of 0.01 to 0.5 on the seismic force reduction factor D_{s} and ductility ratio μ . Furthermore, a simple force reduction factor evaluation method considering the resonance between the dome and substructure was proposed. Finally, static analyses with an equivalent seismic load with the proposed D_{s} were compared to the NLRHAs.

Keywords: Spatial Structures, Metal Gridshell, Latticed Dome, Seismic Force Reduction Factor, Equivalent Static Seismic Load, Equivalent Lateral Force Procedure 空間構造, 鉄骨グリッドシェル, ラチスドーム, 構造特性係数, 等価静的地震荷重, 保有水平耐力計算法

1. 序

日本では、大規模なラチスシェル屋根構造であっても、軒高さ60m 以下の建築物は、保有水平耐力計算法に基づく耐震構造(主架構部材 の靭性に期待して建築物の倒壊を避けることに特化した構造)とし て設計することが一般的である^{1),2)}。保有水平耐力計算法では、静 的解析を用いて、稀な地震に対する1次設計と極稀な地震に対する2 次設計の2段階で構造物の耐震安全性を検証する。ただし、静的解 析に適用する等価静的地震荷重(Ai分布)は、重層構造物の水平地震 応答を包絡するせん断力分布として定義されており、水平方向の入 力に対して上下鉛直方向にも振動するラチスシェル屋根は原則適用 範囲外にある。そこで日本のシェル・空間構造の研究分野では、ラ チスシェル屋根専用の等価静的地震荷重³⁾⁻¹⁴⁾が精力的に検討され、 一部がラチスシェル屋根構造設計指針¹⁵⁾にまとめられた。

Table 1 に屋根部材の耐震設計法の選択肢¹⁵と既往研究の関係性 を整理して示す。部材を弾性に留める1次設計(Table 1の1行目)で は、単純に等価静的地震荷重³⁾⁻¹⁴⁾を適用した静的解析結果から屋根 部材を許容応力度設計すればよい。一方,部材の塑性化を認める2 次設計には2つの選択肢が想定される。まず,(1)極稀な地震荷重に 対しても屋根部材の許容応力度設計(Table 1の2~4行目)を検討し, それが難しい場合は(2)屋根部材の応答を終局未満に収める終局強 度設計(Table 1の5行目)を検討する。ただし,(1)の場合では,その ままの極稀な地震荷重(Table 1の2行目)に対して屋根部材を許容応 力度設計することは現実的でないため,支持架構の塑性化による屋

- *3 明治大学 理工学部建築学科 教授·博士 (工学)
- *4 東京工業大学 建築学系 教授·博士(工学)

根部入力の低減を考慮した地震荷重(Table 1 の 3~4 行目)が望まれる。 その場合では、並列多質点系モデルと等価線形化法を組合せ、任意 の履歴特性を有するラチスドームの等価静的地震荷重を直接評価す る加藤・小西らの方法¹⁶や、制振部材を配置した支持架構の等価静 的地震荷重を直接評価する竹内・小河ら¹⁷⁾の方法が利用できる。(2) の場合では、中澤ら¹⁸⁾⁻²¹⁾の靭性指標や、熊谷ら²²⁾⁻²⁴⁾の許容変形角な ど屋根部の動座屈を考慮した終局変形性能評価法が提案されている。 このようにラチスシェル屋根の等価静的地震荷重は網羅的に整備

されている一方,独自性が強く,通常の耐震設計法の手続きに対す る配慮は未だ希薄であり,保有水平耐力計算法との互換性を考慮し た補足が必要と考えられる。特に(1)の場合では,保有水平耐力計算

Table 1	The state-of-a	irts of seismic desig	gn of m	etal spatial roofs

Desgin stage	Base shear factor earthquake load	Design code	Roof member	Existing research		
1st stage (1次設計) C ₀ =0.2	Bare C_0 (\Rightarrow 0.2g)	Allowable stress design 許容応力度設計法	Elastic	Load distribution Kato et al. 3) Takiuchi et al. 4)		
	Bare C_0 ($= 1.0g$)	Allowable stress design 許容応力度設計法	Elastic	Yamada et al. 5)~7) Takeuchi et al. 8)~14)		
2nd stage (2次設計) C ₀ = 1.0	Code-D _s C ₀	Allowable stress design 許容応力度設計法	Elastic	Nair et al. 27)		
	Realistic-D _s C ₀	Allowable stress design 許容応力度設計法 This paper's topic	Elastic	Load distribution Kato et al. 16) Takeuchi et al. 17) D _s evaluation		
	N/A	Ultimate strength design considering roof collapse 終局強度設計	Inelastic	Ductility index Nakazawa et al. 18)~21) Ultimate ductility Kumagai et al. 22)~26)		

Assist. Prof., Dept. of Arch. and Build. Eng., Tokyo Institute of Technology, Dr.Eng. Grad. Student, Dept. of Arch. and Build. Eng., Tokyo Institute of Technology Prof., Dept. of Arch., School of Science and Technology, Meiji University, Dr.Eng. Prof., Dept. of Arch. and Build. Eng., Tokyo Institute of Technology, Dr.Eng.

^{*1} 東京工業大学 建築学系 助教·博士 (工学)

^{*2} 東京工業大学 建築学系 大学院生

法に慣れている設計者は、地震荷重の低減効果を構造特性係数 D_sと して認識しており、実際には同指針の方法^{16),17)}ではなく、D_s値を乗 じた等価静的地震荷重²⁵⁾(Table 1 の 3 行目、荷重分布は単に Ai 分布 の場合もある)を独自に使用している。しかも、支持架構による屋根 部入力の低減効果は繰返し報告²⁶⁾⁻²⁸⁾されているが、ラチスシェル屋 根構造の諸元で整理された D_s値の統計情報が整備されておらず、地 震応答との対応関係が不明な法規上の D_s値が慣用されている。つま り、荷重分布の設定法³⁾⁻¹⁷⁾と独立して、屋根部材 2 次設計用の D_s値 を提供する必要がある。この D_s値評価では、笠井の等価一自由度系 の理論²⁹⁾が有効と考えられるが、同構造への適用性は不明である。

本研究では、屋根部材2次設計用のDs値の基礎検討として、鉄骨造の一層支持架構付きラチスドームの諸元がDs値に与える影響を数値解析的に検証し、その統計情報の整備とDs値評価法の提案を試みる。まず、2~3章では数値解析概要を述べる。次の4章では一層支持架構付きラチスドーム構造の弾塑性地震応答特性を分析する。 続く 5~6章では屋根部応答の励起を考慮したDs値評価法を提案し、文献25)の等価静的地震荷重を例に提案手法の妥当性を検証する。

2. 数值解析概要

2.1 数値解析モデルと検討パラメータ

Fig. 1 に数値解析モデルの概要を示す。Fig. 1(a)に示すように、検 討対象は筆者らの既往研究¹³⁾にて使用実績のある鉄骨造の一層支持 架構付きラチスドームである。Fig. 1(b)に示すように、本研究では、 同建物の屋根部を弾性梁要素で構成された立体骨組に、支持架構を Bilinear 型復元力特性を有する弾塑性せん断バネにモデル化し,保有 水平耐力計算法に基づき耐震構造として設計された同建物の各種諸 元が屋根部材 2 次設計用の構造特性係数 D_s 値に与える影響を広範 に検証する。検討パラメータは、①屋根スパン L=60~150m、②支持 架構降伏時のベースシア係数 C_y 、③同降伏時の層間変形角 θ_y 、④2 次剛性比 pとする。屋根半開角は 30°,支持架構軒高さ H_s は 6m で 固定する。Fig. 1(c)に示すように、屋根部材はデプススパン比 1/50 と 等価な面外曲げ剛性を有する断面 ⁹に置換し、その部材諸元は Table 2 に示す。屋根部の固定荷重は 2.0kN/m²である。

Table 3 に支持架構の耐震構造種別と検討パラメータ関係を示す。 同表には支持架構のせん断変形周期 T₀と屋根部逆対称一波モード O1 に対する周期比 R_Tの他に、制振構造として設計した場合の主架 構に対する制振部材の水平剛性比 k_d/k_f³⁰⁾も併記している。本研究の 支持架構の耐震構造種別は、降伏時の層間変形角 θ_vと二次剛性比 p によって、(a)ピン接合柱梁骨組に座屈拘束ブレース(BRB)を配置し て BRB に水平剛性と靭性の全てを負担させる海外で主流の BRB 付 き骨組(BRBF, *θ_y*=1/750rad., *p*=0.01~0.05), (b)剛接合柱骨組に BRB を配置して地震時に柱梁主架構を弾性に留めることを期待する日本 の BRB 付き骨組(SMRF+BRB, *θ_v*=1/750rad., *p*=0.20~0.50), (c)純ラ ーメン骨組(SMRF, θy=1/150~1/100rad., p=0.01~0.05), (d)耐震間柱等 を併用した純ラーメン骨組(SMRF', $\theta_y = 1/150 \sim 1/100$ rad., p=0.20~0.50)の4種類に分類される。p=0.20~0.50に該当する建物は、制振 部材が無い状態でも保有水平耐力計算法の規定を満たす付加制振型 の耐震構造と捉える場合がある。純ラーメン骨組系の(c)(d)では、1 次設計時の層間変形角制限に接近して設計した場合(θ,=1/150rad.)と 弾性限界変位を大きく設計した場合(θy=1/100rad.)を比較する。

2.2 入力地震動特性と数値解析手法

Fig.2 に入力地震動の加速度応答スペクトルを示す。本研究では, 建設省告示第 1457 号の第 2 種地盤の設計用スペクトル³¹⁾に位相適 合した告示波を用いる。位相特性は,日本の設計実務で慣例的な El Centro, Hachinohe(長周期地震),JMA-Kobe(直下型地震)を選び,結 果のバラツキを分析する。告示波の加速度スペクトルピーク値 は 1.0g であり,保有水平耐力計算の極稀な地震荷重と同等である。

数値解析手法^{32),33)}は実固有値解析,応答スペクトル解析,時刻歴 応答解析を用いる。比例減衰行列は初期の剛性・質量行列に基づく Rayleigh型とし,1次と2次の減衰比を2%とする。実固有値解析と 応答スペクトル解析は,対象構造物の弾性時地震応答特性を分析す るために用いる。応答スペクトル解析のモード重合は完全二次結合 法(CQC)を用い,採用モード数は降順の有効質量比和が90%以上と する。時刻歴応答解析(NLRHA)は対象構造物の弾塑性地震応答特性 の分析と統計化に用いる。増分変位の計算は Newmark β 法(β=1/4)を 用いる。NLRHA では屋根部のみ幾何剛性と座標移動による大変形 を考慮する。Fig. 3 の CQC 法と NLRHA の比較(屋根部の節点応答と 部材力応答)に示すように,支持架構弾性時の応答スペクトル解析は 十分な精度を有している。

2.3 構造特性係数 Ds の定義

構造関係技術基準同解説書³⁴⁾に示されるように,構造特性係数*D*_s とは,構造物の塑性変形や減衰性により,弾性応答時の最大水平地 震力(≒ベースシア)を低減させる係数として定義されている。本研 究では,この定義に従って時刻歴応答解析または評価による*D*_s値は 弾性応答時に対する弾塑性応答時のベースシアの比として算出する。

2.4 笠井の等価一自由度系の理論(SDOF法)

Ds値評価の手がかりとなる笠井の等価一自由度系の理論²⁹(SDOF 法)について説明する。Fig.4に評価手順の概要を示す。まず対象構 造物をベースシア-代表層間変形角関係が等価な弾塑性一自由度系 にモデル化し(Fig.4(a)(b)),次に応答スペクトル値から等価弾塑性一 自由度系の弾性地震応答を計算し,続いてその復元力特性に従って 等価弾塑性一自由度系を等価な周期 T_{eq},減衰比 ζ_{eq}を有する弾性一 自由度系に収斂的に変換し(Fig.4(c)),最後に収斂計算後の等価弾性 一自由度系の諸元より Ds 値と支持架構塑性率 μ を評価する。 (Fig.4(d))。主要な部分を抽出した詳細な手順は以下の通りである。 (1)等価弾塑性一自由度系の弾性時周期(支持架構周期)を計算する。

$$T_0 = 2\pi \sqrt{\frac{M_{eq}}{K_s}} = 2\pi \sqrt{\frac{\theta_y H_s}{C_y g}}$$
(1)

ここにgは重力加速度, $K_s \ge M_s$ は支持架構の代表水平剛性と質量, $K_R \ge M_R$ は屋根部の剛性と質量, $M_{eq}=M_s+M_R$ である。この周期 T_0 と 初期減衰比 ξ_0 より等価弾塑性一自由度系の弾性時の加速度応答スペ クトル値 S_{40} と変位応答スペクトル値 S_{20} が決定される。本検討は一 層支持架構が対象のため,等価弾塑性一自由度系の θ_y や H_s には対 象構造物の値をそのまま適用し,等価高さ等の補正³⁰)は省略できる。 (2)等価弾性一自由度系の代表諸元を収斂計算する。

$$\mu = \left(\frac{S_{D0}}{H_s \theta_y}\right) \sqrt{\frac{1+25\xi_{eq}}{1+25\xi_{eq}}} \times \begin{cases} \frac{T_{eq}}{T_0} \frac{T_0 + T_{eq}}{2T_0} & (T_{eq} < T_c) \\ \frac{T_{eq}}{T_0} \left\{\frac{T_c}{T_0} - \frac{(T_c/T_0 - 1)^2}{2(T_{eq}/T_0 - 1)}\right\} & (T_{eq} \ge T_c, T_0 < T_c) \\ \frac{T_{eq}}{T_0} & (T_0 \ge T_c) \end{cases}$$
(2)

$$T_{eq} = \sqrt{\frac{\mu}{1 - p + p\mu}} T_0 \tag{3}$$

$$\xi_{eq} = \xi_0 + \frac{2}{\pi \mu p} \ln \frac{1 + p(\mu - 1)}{\mu^p}$$
(4)

ここに T_c は加速度と速度スペクトルの一定領域の境界周期である。 収斂計算は μ , T_{eq} , ξ_{eq} を入れ替えながら式(2)~式(4)を順番に約 20 回 繰返し計算し, 1回目の式(2)では T_{eq} と ξ_{eq} に T_0 と ξ_0 を代入する。 (3) 最終的な等価弾性一自由度系の代表諸元から D_s 値を評価する。

$$D_{s} = \sqrt{\frac{1+25\xi_{0}}{1+25\xi_{eq}}} \times \begin{cases} \frac{T_{0}}{T_{eq}} \frac{T_{0}+T_{eq}}{2T_{0}} & (T_{eq} < T_{c}) \\ \frac{T_{0}}{T_{eq}} \left\{ \frac{T_{c}}{T_{0}} - \frac{(T_{c}/T_{0}-1)^{2}}{2(T_{eq}/T_{0}-1)} \right\} (T_{eq} \ge T_{c}, T_{0} < T_{c}) \\ \frac{T_{0}}{T_{eq}} & (T_{0} \ge T_{c}) \end{cases}$$
(5)

Fig. 4 Conventional DS evaluation based on the SDOF method Table 4 Evaluation results by the conventional SDOF method (a) Force reduction factor D_s

и	0		т	Post-yielding stiffness ratio $p = 1/(1+k_d/k_f)$										
Π_{S}	σ_y	C_y	10	0.01	0.02	0.05	0.20	0.33	0.50					
(m)	(III) (Iad.)	d.)	(s)	0.01	0.02	0.05	$(k_d/k_f=4.0)$	$(k_d/k_f=2.0)$	$(k_d/k_f=1.0)$					
		0.3	0.33	0.31	0.32	0.35	0.45	0.53	0.63					
	1/750	0.4	0.28	0.41	0.41	0.43	0.52	0.59	0.68					
	1//30	0.5	0.25	0.51	0.51	0.53	0.60	0.66	0.74					
6		06	0.23	0.61	0.61	0.62	0.68	0.74	0.80					
0	1/100	0.3	0.90	0.43	0.43	0.44	0.51	0.57	0.66					
		0.4	0.78	0.49	0.49	0.51	0.57	0.63	0.70					
	1/100	0.5	0.69	0.55	0.55	0.56	0.62	0.67	0.74					
		0.6	0.63	0.60	0.61	0.62	0.67	0.72	0.78					
(b) Ductility ratio μ														
11	0		T		Post	-yield ir	ng stiffness rat	io $p = 1/(1+k)$	d/k_f					
H_s	θ_y	C_y		0.01	0.00	0.05	0.20	0.33	0.50					
(m)	(rad.)		(s)	0.01	0.02	0.05	$(k_d/k_f=4.0)$	$(k_d/k_f=2.0)$	$(k_d/k_f = 1.0)$					
		0.3	0.33	4.53	4.42	4.14	3.52	3.31	3.20					
	1/750	0.4	0.28	2.80	2.78	2.71	2.53	2.45	2.40					
	1//30	0.5	0.25	2.11	2.10	2.08	2.01	1.98	1.95					
6		0.6	0.23	1 74	1 74	1 73	1 69	1.67	1.66					
0		0.3	0.90	2.06	2.06	2.06	2.07	2.09	2.13					
	1/100	0.4	0.78	1.83	1.83	1.83	1.84	1.86	1.88					
	1/100	0.5	0.69	1.68	1.68	1.68	1.69	1.70	1.72					
		06	0.63	1 57	1 57	1 57	1.57	1.58	1.60					

Table 4 に設計用スペクトル(Fig.2, T_c =0.64s)を用いて評価した構 造特性係数 D_s 値と支持架構塑性率 μ を,対象構造物の検討パラメー タで整理して示す。式(1)~式(5)に示すように、笠井の等価一自由度 系の理論²⁹⁾では、 D_s 値と μ は支持架構降伏時のベースシア係数 C_y 、 層間変形角 θ_y ,二次剛性比 p,軒高さ H_s に強く影響を受け、Table 3 に示すように、理論上は特に $C_y \ge p$ に比例すると評価される。その 一方、従来の理論²⁹⁾は重層構造物が対象であり、屋根部は剛床とし て質量しか考慮していないため、空間構造への適用性は不明である。 そこで本研究は、屋根部スパンや支持架構との周期比による屋根部 応答の励起⁹⁾が評価法の適用性に与える影響も分析する。

3. 一層支持架構付きラチスドームの弾性時動的応答特性

3.1 固有振動特性

Table 5 に屋根部の主要振動モード(逆対称 1 波モード O1, 同 2 波 モード O2, 同 2.5 波モード O2.5, 面内モード I, 振動モード形状は Fig.5)の周期,式(1)の評価上の支持架構周期 T₀, 一層支持架構付き ラチスドームの卓越固有振動モードの周期(括弧部は連成している 屋根部モード),屋根稜線A点(Fig.1(a))の水平方向刺激関数値,同水 平方向応答加速度のモード応答支配比率を検討パラメータで整理し て示す。ここに R_T は屋根部OIモードに対する支持架構周期比, R_M は屋根部質量に対する全質量比である。モード応答支配比率はCQC 応答値に対する各モード応答値の比の2乗で計算する¹⁴⁾。同表に示 すように、卓越固有振動モードの順位1位は支持架構が全体でせん 断変形するモードが支配的な屋根OIモードとの連成モードであり, その周期は理論上の評価値(式(1))と良好に対応する。同様に順位2 位と3位も支持架構と屋根OI,O2モードの連成モードであるが, その周期は屋根部モデルに近く,屋根振動が支配的なモードである。 屋根稜線 A 点の水平方向の刺激関数値や加速度のモード応答支配 比率に示すように, R_T =1.0 のモデルでは,屋根振動が支配的な順 位 2 位のモードがより卓越し(屋根 OI モードが励起されている),後 述するように,これが従来型の D_s 値評価法の誤差の要因となる。

3.2 屋根面稜線応答加速度と等価静的地震荷重

屋根面稜線応答加速度と等価静的地震荷重を比較分析する。部分 球形ドームの等価静的地震荷重²⁵⁾は,支持架構軒高さの水平加速度 $A_{eq}(2.4 節の S_{A0}),周期比 R_T,質量比 R_M,屋根半開角 <math>\theta$ (rad.)による 屋根応答増幅率 F_H , F_V (R_M >1.2 かつ R_T <1.5 の範囲では F_H ', F_V)に

Table 5 Summary of predominant modal characteristics

基づき,屋根部 O1 モードを模擬する節点加速度の座標関数 A_H, A_V を計算し,節点質量を乗じて静的解析の節点外力とする。計算式は式(6)~式(11)を用いる。

$$A_H = A_{eq} \{ 1 + (F_H - 1) \cos(\pi \sqrt{x^2 + y^2} / L) \}$$
(6)

$$A_V = A_{eq} F_V(x / \sqrt{x^2 + y^2}) \sin(2\pi \sqrt{x^2 + y^2} / L)$$
(7)

$$F_{H} = \begin{cases} 1.5 & (0 < R_{T} \le 5 / 36, R_{M} \le 1.2) \\ \sqrt{5 / 4R_{T}} & (5 / 36 < R_{T} \le 5 / 4, R_{M} \le 1.2) \\ 1 & (5 / 4 < R_{T}, R_{M} \le 1.2) \end{cases}$$
(8)

$$F_{V} = \begin{cases} 3C_{V}\theta & (0 < R_{T} \le 5/16, R_{M} \le 1.2) \\ \sqrt{5/R_{T} - 1}C_{V}\theta & (5/16 < R_{T} \le 5, R_{M} \le 1.2) \\ 0 & (5 < R_{T}, R_{M} \le 1.2) \end{cases} & & & & & & \\ C_{v} = 1.85 \quad (9)$$

$$\vec{F_H} = \sqrt{F_H^2 + 1/\{(1 - R_T^2)^2 + (1/R_M)^{\theta}\}} \quad (R_T < 1.5, 1.2 < R_M)$$
(10)
$$\vec{F_V} = \sqrt{F_V^2 + 1/\{(1 - R_T^2)^2 + (1/R_M)\}} \quad (R_T < 1.5, 1.2 < R_M)$$
(11)

Fig. 6 に屋根部応答増幅率の解析結果と評価関数(式(8)~式(11))の 比較を, Fig. 7 に屋根部稜線加速度の CQC 応答と等価静的地震荷重 の比較を示す。Fig. 7 にはモード応答支配比率も重ねて示している。 Fig. 6 と Fig. 7 に示すように,屋根部応答増幅率の評価関数と等価 静的地震荷重は解析結果を概ね包絡している。また,Fig. 7 に示すよ うに,稜線加速度応答は屋根 O1 モードが支配的である。 以上に示すように、本検討の一層支持架構付きラチスドームは屋 根 O1 モードの応答が励起される標準的なダブルレイヤー形式のラ チスドーム構造であり、その弾性時の動的応答特性は 2.4 節の評価 法や 3.2 節の等価静的地震荷重で良好に捉えられる範囲にある。

4. 一層支持架構付きラチスドームの弾塑性地震応答特性

4.1 支持架構の耐震構造種別との。値と塑性率 μの関係

まず,支持架構の耐震構造種別に注目して D_s 値と塑性率 $\mu を分析$ する。Fig. 8 に支持架構降伏時のベースシア係数 C_y を横軸にとった D_s 値と塑性率 μ を耐震構造種別で整理して示す。同図のマーカーは告示3波に対する平均値,エラーバーは変動,色の濃淡は2次剛性比pを表し,赤青緑色のマーカーは解析結果(NLRHA),灰色系のマーカーは等価一自由度系の理論²⁹⁾による評価値(SDOF)である。本章から実効の D_s 値を Realistic- D_s ,法規上の D_s 値を Code- D_s と示す。

耐震構造種別に依らない一般的な傾向として,一層支持架構付き ラチスドームの D_s 値と塑性率 μ は,主に C_y とpに比例する。両者 はトレードオフ関係にあり, C_y を低く抑えて設計することは,屋根 部への入力低減に有効(D_s 値→小)だが支持架構の最大変位応答は増 大(μ →大)し,剛接合柱梁骨組とその他耐震部材を併用してpを大き

Fig. 8 NLRHA results of the seismic force reduction factor D_s and ductility ratio μ

Table 6 Summary	y of mean	and variation	of NLRHA	results
	(a) Eanaa m	dustion fastan D		

ρ	C	p=0.01		<i>p</i> =0.02		p=0.05		$p = 0.20 (k_d/k_f = 4.0)$		$p = 0.33 (k_d/k_f = 2.0)$		$p = 0.50 (k_d/k_f = 1.0)$							
0 y	Cy	L=60m	L = 100 m	L = 150 m	L=60m	L = 100 m	L = 150 m	L=60m	L = 100 m	L = 150 m	L=60m	L=100m	L=150m	L=60m	L=100m	L = 150 m	L=60m	L = 100 m	L = 150 m
	0.3	0.32(3.6%)	0.39(4.9%)	0.41(10%)	0.33(4.0%)	0.4(5.7%)	0.43(11%)	0.34(4.5%)	0.42(7.3%)	0.45(13%)	0.41(3.1%)	0.49(9.2%)	0.57(20%)	0.45(2.8%)	0.57(11%)	0.63(21%)	0.5(3%)	0.67(13%)	0.71(19%)
	0.4	0.46(3.4%)	0.6(4.7%)	0.58(8.7%)	0.47(3.1%)	0.61(4.3%)	0.59(8.6%)	0.49(2.5%)	0.62(4%)	0.61(8.3%)	0.54(1.7%)	0.68(3.5%)	0.68(5.7%)	0.59(2.4%)	0.74(2.3%)	0.72(3.8%)	0.66(3.5%)	0.8(2.1%)	0.77(5.1%)
1//50	0.5	0.62(3.6%)	0.64(2.6%)	0.72(7.6%)	0.62(3.6%)	0.65(2.5%)	0.72(7.3%)	0.63(3.5%)	0.66(2.5%)	0.73(6.8%)	0.69(2.9%)	0.72(4.5%)	0.77(6.4%)	0.73(3.1%)	0.76(5.8%)	0.81(6.5%)	0.77(4.1%)	0.82(5.9%)	0.84(6.8%)
	0.6	0.73(4.6%)	0.78(4.3%)	0.92(8.3%)	0.74(4.3%)	0.79(4.2%)	0.92(8.1%)	0.75(3.6%)	0.8(3.9%)	0.92(7.5%)	0.79(1.5%)	0.84(2.8%)	0.94(5.6%)	0.82(2%)	0.87(2.1%)	0.95(4.1%)	0.86(2.9%)	0.91(1.4%)	0.97(2.6%)
	0.3	0.35(3.2%)	0.37(3.8%)	0.38(6.3%)	0.36(3.3%)	0.37(4.8%)	0.38(7.5%)	0.37(4.1%)	0.39(6.4%)	0.4(9.2%)	0.42(6.8%)	0.44(11%)	0.46(14%)	0.46(6.5%)	0.49(11%)	0.51(15%)	0.53(5%)	0.56(10.2%	0.58(14%)
	0.4	0.4(3.7%)	0.41(4.2%)	0.42(3.7%)	0.41(3.7%)	0.42(4.1%)	0.43(3.8%)	0.42(3.8%)	0.43(4%)	0.44(4.1%)	0.46(2.8%)	0.47(4.4%)	0.48(6.3%)	0.5(4.3%)	0.52(6.4%)	0.52(8.8%)	0.55(8.3%)	0.56(9.9%)	0.56(11%)
1/150	0.5	0.54(8.0%)	0.52(5.7%)	0.53(0.2%)	0.54(7.7%)	0.52(5.5%)	0.53(0.3%)	0.55(7%)	0.53(5.1%)	0.54(0.9%)	0.6(4.8%)	0.58(4.8%)	0.59(4.4%)	0.64(4.6%)	0.62(6.2%)	0.64(7.1%)	0.7(5.2%)	0.68(7.9%)	0.69(8.9%)
	0.6	0.65(5.7%)	0.59(1.5%)	0.68(8.8%)	0.65(5.7%)	0.59(1.3%)	0.68(8.6%)	0.66(5.6%)	0.6(1%)	0.69(8.2%)	0.71(5.6%)	0.64(2.7%)	0.73(6.7%)	0.75(5.5%)	0.68(3.6%)	0.77(5.9%)	0.79(5.8%)	0.74(4.4%)	0.82(5.2%)
	0.3	0.44(4.0%)	0.44(5.7%)	0.45(5.0%)	0.44(3.7%)	0.45(5.4%)	0.45(4.6%)	0.46(2.9%)	0.46(4.5%)	0.47(3.6%)	0.52(2.4%)	0.53(2.2%)	0.54(1.1%)	0.58(4.3%)	0.59(3.2%)	0.59(2.3%)	0.64(6.5%)	0.65(4.9%)	0.66(4.2%)
	0.4	0.49(3.6%)	0.49(3.5%)	0.51(0.7%)	0.49(3.9%)	0.49(3.8%)	0.51(0.7%)	0.51(4.9%)	0.5(4.6%)	0.52(1.2%)	0.56(7.8%)	0.56(8.1%)	0.58(5%)	0.6(9.6%)	0.6(10%)	0.62(7.2%)	0.65(10.9%	0.65(11.7%	0.68(8.9%)
1/100	0.5	0.52(2.4%)	0.56(4.7%)	0.6(7.3%)	0.52(2.3%)	0.57(4.7%)	0.6(7.4%)	0.53(2.1%)	0.57(4.7%)	0.61(7.5%)	0.55(1.5%)	0.6(4.9%)	0.64(7.8%)	0.58(1.2%)	0.62(5.3%)	0.66(8%)	0.62(1.5%)	0.67(6.6%)	0.69(7.5%)
	0.6	0.6(3.5%)	0.62(4.2%)	0.63(3.6%)	0.61(3.3%)	0.62(4.1%)	0.64(3.6%)	0.62(2.9%)	0.63(3.8%)	0.64(3.6%)	0.66(1.8%)	0.67(3.9%)	0.68(3.9%)	0.68(2.6%)	0.69(5%)	0.7(4.5%)	0.72(4.1%)	0.73(6.2%)	0.73(5.5%)
		n = 0.01		n = 0.02			(c) E detinity fu			$n = 0.20 (k \cdot /k = 4.0)$		$n = 0.33 (k \cdot / k = 2.0)$			n=0.50 (k / k = 1.0)				
θ_y	C_y	I = 60m	I = 100m	I = 150m	I = 60m	I = 100m	I = 150m	I = 60m	I = 100m	I = 150m	I = 60m	I = 100 m	I = 150m	I = 60m	I = 100 m	I = 150m	I = 60m	I = 100 m	I = 150m
				$I_{\ell} = 1.30111$	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	L - 100 m	L = 150 m	$I_{i} = 00111$	L - 100 m	L = 130 m	1 = 00111	L - 100111	$1_{1} = 1.3011$	L = 00111	L - 10000	L = 150 m	L = 0000	L = 100 m	L = 150iii
-	0.2	L = 00111	L = 100111	5 2(490/)	2 4(210/)	2 2(260/)	4.9(470/)	2.0(259/)	2.0(200/)	2.0(420/)	2.5(20/)	2 5(150/)	2 2(220/)	2 4(20/)	2.5(150/)	2.9(270/)	2.2(10/)	2((120/))	2((100/))
	0.3	2.6(34%)	3.4(39%)	5.2(48%)	3.4(31%)	3.2(36%)	4.8(47%)	2.9(25%)	2.9(29%)	3.9(42%)	2.5(3%)	2.5(15%)	3.2(32%)	2.4(3%)	2.5(15%)	2.8(27%)	2.3(1%)	2.6(13%)	2.6(19%)
1/750	0.3	2.6(14%)	3.4(39%) 2.8(20%)	5.2(48%) 2.3(18%)	3.4(31%) 2.6(15%)	3.2(36%) 2.6(18%)	4.8(47%) 2.3(16%)	2.9(25%) 2.3(18%)	2.9(29%) 2.3(13%)	3.9(42%) 2.2(12%)	2.5(3%) 2(9%)	2.5(15%) 1.9(8%)	3.2(32%) 2(11%)	2.4(3%) 1.9(3%)	2.5(15%) 1.8(8%)	2.8(27%) 1.8(12%)	2.3(1%) 1.9(8%)	2.6(13%) 1.8(6%)	2.6(19%) 1.8(11%)
1/750	0.3 0.4 0.5	2.6(14%) 1.7(12%)	3.4(39%) 2.8(20%) 1.8(20%)	5.2(48%) 2.3(18%) 1.6(24%)	3.4(31%) 2.6(15%) 1.7(11%)	3.2(36%) 2.6(18%) 1.8(19%)	4.8(47%) 2.3(16%) 1.6(22%)	2.9(25%) 2.3(18%) 1.7(10%)	2.9(29%) 2.3(13%) 1.7(18%)	3.9(42%) 2.2(12%) 1.6(19%)	2.5(3%) 2(9%) 1.6(9%)	2.5(15%) 1.9(8%) 1.7(17%)	3.2(32%) 2(11%) 1.5(10%)	2.4(3%) 1.9(3%) 1.6(9%)	2.5(15%) 1.8(8%) 1.6(15%)	2.8(27%) 1.8(12%) 1.4(6%)	2.3(1%) 1.9(8%) 1.5(7%)	2.6(13%) 1.8(6%) 1.6(11%)	2.6(19%) 1.8(11%) 1.4(3%)
1/750	0.3 0.4 0.5 0.6	2.6(34%) 2.6(14%) 1.7(12%) 1.5(22%)	2.8(20%) 1.8(20%) 1.4(8%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%)
1/750	0.3 0.4 0.5 0.6 0.3	2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%)	2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%) 2.2(24%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(12%)
1/750	0.3 0.4 0.5 0.6 0.3 0.4	2.6(34%) 2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%) 2(10%)	2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%) 2(10%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%) 1.8(5%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%) 2(9%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%) 2(9%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%) 1.8(5%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%) 2(6%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%) 2(6%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%) 1.8(7%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%) 1.8(6%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%) 2.2(24%) 1.8(6%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%) 1.7(9%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%) 1.8(10%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%) 1.8(9%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%) 1.7(12%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%) 1.8(14%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%) 1.8(13%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(13%)
1/750	0.3 0.4 0.5 0.6 0.3 0.4 0.5	20011 3.6(34%) 2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%) 2(10%) 1.9(17%)	2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%) 2(10%) 1.8(17%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%) 1.8(5%) 1.9(20%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%) 2(9%) 1.8(18%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%) 2(9%) 1.8(17%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%) 1.8(5%) 1.8(17%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%) 2(6%) 1.8(17%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%) 2(6%) 1.8(16%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%) 1.8(7%) 1.8(7%) 1.8(16%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%) 1.8(6%) 1.7(17%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%) 2.2(24%) 1.8(6%) 1.7(16%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%) 1.7(9%) 1.7(16%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%) 1.8(10%) 1.7(18%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%) 1.8(9%) 1.7(18%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%) 1.7(12%) 1.7(17%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%) 1.8(14%) 1.7(18%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%) 1.8(13%) 1.7(17%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(13%) 1.7(15%)
1/750 1/150	0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6	20011 3.6(34%) 2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%) 2(10%) 1.9(17%) 1.9(17%)	2.4(39%) 2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%) 2(10%) 1.8(17%) 1.7(16%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%) 1.8(5%) 1.9(20%) 1.5(21%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%) 2(9%) 1.8(18%) 1.8(18%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%) 2(9%) 1.8(17%) 1.7(17%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%) 1.8(5%) 1.8(17%) 1.5(21%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%) 2(6%) 1.8(17%) 1.7(4%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%) 2(6%) 1.8(16%) 1.7(17%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%) 1.8(7%) 1.8(16%) 1.5(21%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%) 1.8(6%) 1.7(17%) 1.6(9%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%) 2.2(24%) 1.8(6%) 1.7(16%) 1.5(13%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%) 1.7(9%) 1.7(16%) 1.5(18%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%) 1.8(10%) 1.7(18%) 1.5(8%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%) 1.8(9%) 1.7(18%) 1.6(10%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%) 1.7(12%) 1.7(17%) 1.5(15%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%) 1.8(14%) 1.7(18%) 1.5(7%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%) 1.8(13%) 1.7(17%) 1.6(9%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(13%) 1.7(15%) 1.5(13%)
1/750	0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6 0.3	20011 3.6(34%) 2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%) 2(10%) 1.9(17%) 1.8(5%) 2.2(18%) 2.2(18%)	2-100111 3.4(39%) 2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%) 2(10%) 1.8(17%) 1.8(17%) 1.7(16%) 2.3(18%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%) 1.8(5%) 1.9(20%) 1.5(21%) 2.3(18%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%) 2(9%) 1.8(18%) 1.8(4%) 2.2(18%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%) 2(9%) 1.8(17%) 1.7(17%) 2.2(18%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%) 1.8(5%) 1.8(17%) 1.5(21%) 2.3(18%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%) 2(6%) 1.8(17%) 1.7(4%) 2.2(18%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%) 2(6%) 1.8(16%) 1.7(17%) 2.2(18%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%) 1.8(7%) 1.8(7%) 1.8(16%) 1.5(21%) 2.2(18%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%) 1.8(6%) 1.7(17%) 1.6(9%) 2.1(16%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%) 2.2(24%) 1.8(6%) 1.7(16%) 1.5(13%) 2.1(17%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%) 1.7(9%) 1.7(16%) 1.5(18%) 2.1(15%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%) 1.8(10%) 1.7(18%) 1.5(8%) 2.1(16%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%) 1.8(9%) 1.7(18%) 1.6(10%) 2.1(16%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%) 1.7(12%) 1.7(17%) 1.5(15%) 2.1(15%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%) 1.8(14%) 1.7(18%) 1.5(7%) 2(16%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%) 1.8(13%) 1.7(17%) 1.6(9%) 2(15%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(13%) 1.7(15%) 1.5(13%) 2(14%)
1/750 1/150 1/100	$\begin{array}{c} 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\$	2 -0011 3.6(34%) 2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%) 2(10%) 1.9(17%) 1.8(5%) 2.2(18%) 2.(18%) 2.(18%)	2 100111 3.4(39%) 2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%) 2(10%) 1.8(17%) 1.7(16%) 2.3(18%) 2(19%) 2(19%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%) 1.8(5%) 1.9(20%) 1.5(21%) 2.3(18%) 1.9(19%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%) 2(9%) 1.8(18%) 1.8(4%) 2.2(18%) 1.9(18%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%) 2(9%) 1.8(17%) 1.7(17%) 2.2(18%) 2(19%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%) 1.8(5%) 1.8(17%) 1.5(21%) 2.3(18%) 1.9(19%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%) 2(6%) 1.8(17%) 1.7(4%) 2.2(18%) 1.9(18%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%) 2(6%) 1.8(16%) 1.7(17%) 2.2(18%) 1.9(20%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%) 1.8(7%) 1.8(16%) 1.5(21%) 2.2(18%) 1.9(20%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%) 1.8(6%) 1.7(17%) 1.6(9%) 2.1(16%) 1.8(15%)	2.5(15%) 1.9(8%) 1.7(17%) 2.2(24%) 1.8(6%) 1.7(16%) 1.5(13%) 2.1(17%) 1.8(18%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%) 1.7(9%) 1.7(16%) 1.5(18%) 2.1(15%) 1.8(20%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%) 1.8(10%) 1.7(18%) 1.5(8%) 2.1(16%) 1.8(14%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%) 1.8(9%) 1.7(18%) 1.6(10%) 2.1(16%) 1.7(16%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%) 1.7(12%) 1.7(17%) 1.5(15%) 2.1(15%) 1.7(18%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%) 1.8(14%) 1.7(18%) 1.5(7%) 2(16%) 1.7(13%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%) 1.8(13%) 1.7(17%) 1.6(9%) 2(15%) 1.7(15%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(13%) 1.7(15%) 1.5(13%) 2(14%) 1.7(16%)
1/750 1/150 1/100	$\begin{array}{c} 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\$	200111 3.6(34%) 2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%) 2(10%) 1.9(17%) 1.8(5%) 2.2(18%) 2.2(18%) 2.(18%) 1.6(7%)	2.4(39%) 2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%) 2(10%) 1.8(17%) 1.7(16%) 2.3(18%) 2(19%) 1.5(5%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%) 1.8(5%) 1.9(20%) 1.5(21%) 2.3(18%) 1.9(19%) 1.5(5%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%) 2(9%) 1.8(18%) 1.8(4%) 2.2(18%) 1.9(18%) 1.5(8%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%) 2(9%) 1.8(17%) 1.7(17%) 2.2(18%) 2(19%) 1.4(5%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%) 1.8(5%) 1.8(17%) 1.5(21%) 2.3(18%) 1.9(19%) 1.5(5%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%) 2(6%) 1.8(17%) 1.7(4%) 2.2(18%) 1.9(18%) 1.5(9%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%) 2(6%) 1.8(16%) 1.7(17%) 2.2(18%) 1.9(20%) 1.4(5%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%) 1.8(7%) 1.8(16%) 1.5(21%) 2.2(18%) 1.9(20%) 1.5(5%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%) 1.8(6%) 1.7(17%) 1.6(9%) 2.1(16%) 1.8(15%) 1.4(6%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%) 2.2(24%) 1.8(6%) 1.7(16%) 1.5(13%) 2.1(17%) 1.8(18%) 1.4(3%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%) 1.7(9%) 1.7(16%) 1.5(18%) 2.1(15%) 1.8(20%) 1.4(3%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%) 1.8(10%) 1.7(18%) 1.5(8%) 2.1(16%) 1.8(14%) 1.4(6%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%) 1.8(9%) 1.7(18%) 1.6(10%) 2.1(16%) 1.7(16%) 1.4(3%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%) 1.7(12%) 1.7(17%) 1.5(15%) 2.1(15%) 1.7(18%) 1.4(2%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%) 1.8(14%) 1.7(18%) 1.5(7%) 2(16%) 1.7(13%) 1.5(7%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%) 1.8(13%) 1.7(17%) 1.6(9%) 2(15%) 1.7(15%) 1.4(5%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(13%) 1.7(15%) 1.5(13%) 2(14%) 1.7(16%) 1.4(1%)
1/750 1/150 1/100	$\begin{array}{c} 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ \end{array}$	2 -00111 3.6(34%) 2.6(14%) 1.7(12%) 1.5(22%) 2.6(40%) 2(10%) 1.9(17%) 1.8(5%) 2.2(18%) 2.2(18%) 2.2(18%) 1.6(7%)	2 100111 3.4(39%) 2.8(20%) 1.8(20%) 1.4(8%) 2.8(42%) 2(10%) 1.4(8%) 2.8(42%) 2(10%) 1.8(17%) 1.8(17%) 1.8(17%) 1.7(16%) 2.3(18%) 2(19%) 1.5(5%) 1.6(8%)	5.2(48%) 2.3(18%) 1.6(24%) 1.3(22%) 2.7(48%) 1.8(5%) 1.9(20%) 1.5(21%) 2.3(18%) 1.9(19%) 1.5(5%) 1.5(5%) 1.5(2%)	3.4(31%) 2.6(15%) 1.7(11%) 1.5(22%) 2.4(39%) 2(9%) 1.8(18%) 1.8(4%) 2.2(18%) 1.9(18%) 1.5(8%) 1.6(8%)	3.2(36%) 2.6(18%) 1.8(19%) 1.4(8%) 2.6(42%) 2(9%) 1.8(17%) 1.7(17%) 2.2(18%) 2(19%) 1.4(5%) 1.6(8%)	4.8(47%) 2.3(16%) 1.6(22%) 1.3(21%) 2.6(48%) 1.8(5%) 1.8(17%) 1.5(21%) 2.3(18%) 1.9(19%) 1.5(5%) 1.5(5%)	2.9(25%) 2.3(18%) 1.7(10%) 1.5(21%) 2.3(32%) 2(6%) 1.8(17%) 1.7(4%) 2.2(18%) 1.9(18%) 1.5(9%) 1.6(9%)	2.9(29%) 2.3(13%) 1.7(18%) 1.4(8%) 2.3(35%) 2(6%) 1.8(16%) 1.7(17%) 2.2(18%) 1.9(20%) 1.4(5%) 1.5(8%)	3.9(42%) 2.2(12%) 1.6(19%) 1.3(20%) 2.4(38%) 1.8(7%) 1.8(16%) 1.5(21%) 2.2(18%) 1.9(20%) 1.5(5%) 1.4(1%)	2.5(3%) 2(9%) 1.6(9%) 1.4(18%) 2.1(22%) 1.8(6%) 1.7(17%) 1.6(9%) 2.1(16%) 1.8(15%) 1.4(6%) 1.5(9%)	2.5(15%) 1.9(8%) 1.7(17%) 1.4(7%) 2.2(24%) 1.8(6%) 1.7(16%) 1.5(13%) 2.1(17%) 1.8(18%) 1.4(3%) 1.5(8%)	3.2(32%) 2(11%) 1.5(10%) 1.2(15%) 2.2(24%) 1.7(9%) 1.7(16%) 1.5(18%) 2.1(15%) 1.8(20%) 1.4(3%) 1.4(2%)	2.4(3%) 1.9(3%) 1.6(9%) 1.4(16%) 2.1(15%) 1.8(10%) 1.7(18%) 1.5(8%) 2.1(16%) 1.8(14%) 1.4(6%) 1.5(9%)	2.5(15%) 1.8(8%) 1.6(15%) 1.4(6%) 2.1(17%) 1.8(9%) 1.7(18%) 1.6(10%) 2.1(16%) 1.7(16%) 1.4(3%) 1.4(8%)	2.8(27%) 1.8(12%) 1.4(6%) 1.2(14%) 2.2(19%) 1.7(12%) 1.7(17%) 1.5(15%) 2.1(15%) 1.7(18%) 1.4(2%) 1.4(3%)	2.3(1%) 1.9(8%) 1.5(7%) 1.4(14%) 2.1(9%) 1.8(14%) 1.5(7%) 2(16%) 1.7(13%) 1.5(7%) 1.5(7%) 1.4(9%)	2.6(13%) 1.8(6%) 1.6(11%) 1.4(6%) 2.1(12%) 1.8(13%) 1.7(17%) 1.6(9%) 2(15%) 1.7(15%) 1.4(5%) 1.4(8%)	2.6(19%) 1.8(11%) 1.4(3%) 1.2(12%) 2.2(14%) 1.7(13%) 1.7(15%) 1.5(13%) 2(14%) 1.7(16%) 1.4(1%) 1.4(4%)

く設計することは、支持架構の最大変位応答低減に有効(μ →小)だが 屋根部への入力を増大(D_s 値→大)する。この傾向を耐震構造種別で 整理すると、 C_y を 0.3 程度に抑えて設計した海外で主流の BRB 付き 骨組(BRBF, Fig. 8(a))は、屋根部の入力低減に最も効果的な耐震構 造と言えるが、地震動の位相特性のバラツキによって 1/100rad.を超 える支持架構の最大変位応答を許容する必要がある。これに対して 同様の C_y で設計した日本で主流の BRB 付き骨組(SMRF+BRB, Fig. 8(b))は、屋根部への入力低減効果は BRBF より劣るものの、支 持架構の地震応答も概ね 1/200rad.以下に抑制できる。一方、純ラー メン骨組に類する耐震構造(SMRF, SMRF', Fig. 8(c)(d))は、 C_y の増 大に対して D_s 値を低く抑えられる点が BRB 付き骨組より優れる が、1/50rad.を超える支持架構の最大変位応答を許容する必要がある。 なお、後述する Table 5 に示すように、 θ_y =1/100rad.と 1/150rad.で結 果に顕著な差異は確認されなかった。

序文で述べたように,設計実務では,層の必要保有水平耐力の下限を定める法規上の *D*_s 値(*Code-D*_s,特に BRB 付き骨組や A ランクの純ラーメン骨組では 0.25)が,屋根部材 2 次設計用の荷重低減係数にも慣用されている。しかし,Fig.8 に示すように,これは実態から乖離した危険側評価であり、少なくとも屋根部材 2 次設計には保有水平耐力に則した実効の *D*_s 値(*Realistic-D*_s)を用いる必要がある。

Table 4 と Fig. 8 に示すように,2.4 節の等価一自由度系の理論に よる評価値は,以上に述べた D_s 値と塑性率 μ の定性的な傾向を捉え ており,同理論は一層支持架構付きラチスドームにも適用可能であ ることが分かる。しかしながら,Fig.8(a)(b)に示すように,一部のモ デルで D_s 値の解析結果を危険側評価する結果となっており,この原 因の分析と評価法の修正は5章にて改めて詳述する。

4.2 各種諸元や入力地震動が Ω。値と塑性率 μ の変動に与える影響 次に一層支持架構付きラチスドームの諸元や入力地震動が D_s値 と塑性率μの変動に与える影響を分析する。

Table 6 に D_s 値と塑性率 μ の平均値と入力地震動に対する変動係 数を検討パラメータの全組合せで整理して示す。同表の青色塗り潰 しは評価法が 20%以上危険側評価するもの,橙色塗り潰しは 20%以 上安全側評価するもの,緑色は評価誤差±20%以内のものを示す。 また, Fig. 9 には Table 6 の変動係数を,屋根に対する支持架構の周 期比 R_T (横軸),屋根スパン L(マーカー),支持架構の二次剛性比 p(マ ーカー色の濃淡)で整理して示す。同図表に示すように、 D_s 値の変動 は、最大約 20%(D_s 値換算で 0.1~0.2)、平均 4.7~6.3%であり、支持架 構の諸元(C_y , p, θ_y)や屋根スパンL、屋根に対する周期比 R_T との相 関性は小さい。入力地震動による塑性率 μ の変動は、最大約 50%(μ 換算で 1.3~2.6)、平均 10~20%であり、特に支持架構降伏時のベース シア係数 C_y と 2 次剛性比p が小さい場合に大きくなりやすいが、 D_s 値と同様に屋根スパンL や周期比 R_T との相関性は小さい。

Fig. 10 に D_s 値と塑性率 μ の平均値に対する入力地震動毎の変動 を、 θ_y (グラフ枠)、 C_y (横軸)、p(マーカー)で整理して示す。支持架構 の各種諸元と変動の相関関係の傾向は、前段落で述べたとおりであ るが、Fig. 10(a1)(b1)に示すように、一層支持架構付きラチスドーム においても, $C_y \approx 0.3$ 程度に抑さえて設計した場合の変動は,直下型地震動(JMA-Kobe)で危険側(過大側),長周期地震動(Hachinohe)で安全側(過小側)に偏る傾向にあることが分かる。

4.3 支持架構の塑性化による屋根部応答の低減効果

続いて支持架構の塑性化による屋根部応答の低減効果を分析する。 Fig. 11 と Fig. 12 に弾性時と弾塑性時の屋根部稜線応答加速度と屋 根部材力の代表例を支持架構の耐震構造種別で整理して示す。同図 らの結果は告示3波に対する平均応答である。なお,以下に述べる とおり,屋根部応答は支持架構の弾塑性応答と複雑に連成するた め,3章の弾性時ほど原因を明確にできない挙動が確認された。

Fig.11 に示すように、水平方向応答加速度は耐震構造種別に関係

Fig. 12 Response reduction effect by elasto-plastic substructures on member forces

なく支持架構降伏時のベースシア係数 C_y に比例した低減効果が発 揮されており、この傾向は水平方向のベースシアの低減係数である D_s 値と一致する。鉛直方向応答加速度も概ね同様の傾向にある一方 で、Fig.11(c1)(c2)(d1)(d2)に示すように、屋根部の鉛直応答が卓越し にくいラチスドーム(屋根に対する支持架構の周期比 R_T が 2.0 以上) では、鉛直方向応答加速度は水平方向ほど低減しない、または値は 小さいものの弾性時より最大約 1.5m/s² 増大する場合があった。

Table 5 や Fig. 11 と Fig. 12 の比較に示すように,屋根部材力も C_y に比例した低減効果が発揮される一方, D_s 値や屋根部稜線応答加速 度と異なり,その低減効果は 2 次剛性比 pにあまり影響を受けない ことが分かる。また,Fig. 11(c1)と Fig. 12(c1)に示すように,水平方 向応答加速度の低減効果が得られる場合では,鉛直方向応答加速度 が弾性時より増大しても屋根部材力は低減することも分かる。

4.4 時刻歴応答解析結果に基づく屋根部材 2 次設計用の Ds 値表

Table 7 に変動分も考慮して時刻歴応答解析結果を丸めて作成した屋根部材 2 次設計用の D_s 値の簡易早見表を示す。設計対象が屋根逆対称一波モード周期 0.2~0.4s,周期比 R_7 =0.7~5.0,質量比 R_M =1.0~1.5 の支持架構付きラチスドームの場合では、この簡易早見表より屋根部材 2 次設計用の D_s 値を決定できる。ただし、適用範囲外の支持架構付きラチスドームの場合では、5 章の修正評価法より D_s 値を精算する必要がある。同表の妥当性は 6 章で検証する。

5. 屋根部応答の励起を考慮した Ds 値評価法の提案

第4章までの数値解析検討より、標準的な鉄骨造の支持架構付き ラチスドームの屋根部材2次設計用のD_s値の統計情報が整備され た。一方、従来の等価一自由度系の理論²⁹は、定性的な傾向を捉え られるが、一部のモデルのD_s値を過小評価することが確認された。 そこで本章は、この精度誤差の原因を明らかにし、任意の鉄骨造支 持架構に適用可能なD_s値の修正評価法の提案を試みる。

5.1 従来の等価一自由度系の理論による Ds 値評価の誤差の原因

Fig. 13 に屋根 O1 モードに対する支持架構の周期比 R_T を横軸にとった D_s 値と塑性率 μ の評価誤差を検討パラメータで整理して示す。 Fig. 13 のエラーバーは入力地震動に対する変動を表す。また, Fig. 14 に周期比 R_T を横軸にとった水平方向の刺激関数値の実固有値解析 結果(β_s は支持架構軒高さに対応する屋根稜線 A 点の値, β_R は屋根 部頂点に対応する屋根稜線 O 点の値)を示す。Fig. 13(a)に示すよう に, D_s 値は屋根部応答が励起される $R_T < 1.5$ で顕著に危険側評価され ている。Fig. 4(a)(b)に示すように,従来の等価一自由度系の理論で は,屋根部を剛な質点として支持架構軒高さに対応する屋根稜線 A 点の刺激感数値 β_s は 1.0 と仮定しているが, Fig. 14 に示すように, 実際には屋根部応答が励起($\beta_R/\beta_s \rightarrow t$)される $R_T < 1.5$ において β_s は著 しく低下する。これが D_s 値の危険側評価の原因である。

5.2 屋根部応答の励起を考慮した Ds 値評価法の提案

屋根部応答の励起を考慮した D_s値評価法(修正評価法)を提案する。 Fig. 15 に修正評価法の概要を従来の評価法と比較して示す。 Fig. 15(b)に示すように,修正評価法では,初めに建物全体と屋根 O1 モードを表現する等価 2 自由度系を用いて屋根部応答の励起を考慮 した刺激関数値 β_sを式(12)と式(13)より精算し,次にβ_sS₄₀を等価弾 塑性一自由度系の弾性時の加速度応答スペクトルとして従来の評価 手順(2.4 節)を準用して D_s値を評価する。この刺激関数値 β_sは, 2 自

Table 7 Simple Ds table based on the NLRHA results

由度系の固有値問題の解として手計算できるが、Fig. 14 に示すよう に、実際の多自由度系では、 $R_T = 1.0$ 近傍以下で O1 モード以外の屋 根振動モードと支持架構振動モードが連成し、結果的に β 、が下げ止 まる傾向にあるため、式(12)は解析結果より下限値を 0.6 とした。付 録 Fig.A1 に Python 3.9 による修正評価法のサンプルコードを示す。 このソースコードはその他のプログラミング言語(Excel VBA 等)お よび Excel 等表計算ソフトへの移植の参考にもされたい。

$$\beta_{s} = \max\left\{\frac{(1-C) + (1-C)^{2} R_{M}}{1 + (1-C)^{2} R_{M}}, 0.6\right\}$$
(12)
$$C = \frac{\left\{R_{M} \left(1 + R_{T}^{2}\right) - \sqrt{R_{M}^{2} \left(1 + R_{T}^{2}\right)^{2} - 4R_{M}^{3} R_{T}^{2} / (1 + R_{M})}\right\}$$
(13)

Fig. 16 に従来の評価法と修正評価法による D_s 値と塑性率 μ の評価精度の比較を、Table 8 に D_s 値(告示 3 波の平均応答)の評価精度の詳細な比較を示す。Fig. 16 のエラーバーは入力地震動による変動分を表す。Table 8 の橙色の塗りつぶしは 20%以上安全側評価のもの、

緑色は誤差±20%のものを示す。Fig. 16(a)と Table 8 に示すように, 修正評価法による D_s 値の評価精度は従来の評価法より良好に改善 し, 概ね全ての時刻歴応答解析結果を安全側で評価した。一方, Fig. 13(b)に示すように, 塑性率 μ は屋根部応答の励起に関係なく, 入力地震動による評価誤差の変動が大きいため, Fig. 16(b)に示すよ うに, 屋根応答の励起を考慮しても評価精度は改善しない。

6. 提案する Ds 評価値を乗じた等価静的地震荷重の妥当性検証

最後に提案する D_s 評価値を乗じた等価静的地震荷重を適用した 静的解析結果と4章の弾塑性時刻歴応答解析結果を比較することで 提案手法の妥当性を検証する。等価静的地震荷重の算定手順は 3.2 節に示す通りであるが,支持架構の弾塑性応答時の代表加速度 A_{eq} にはD_sS₄₀を代入する。Fig. 17 と Fig. 18 に代表的なモデルについて, 屋根面稜線の応答加速度と各種応答値の比較を示す。同図らの Modified は 5.2 節の修正評価法による D_s 値を適用した場合, D_s -table は Table 6 の簡易早見表による D_s 値を適用した場合, NLRHA は 4 章 の弾塑性時刻歴応答解析結果を表す。Fig. 17 に示すように, 4.3 節 で述べた鉛直方向応答加速度が増大する場合を除いて,修正評価法 と簡易早見表による等価静的地震荷重は時刻歴応答解析結果を包絡 出来ている。Fig. 18 に示すように,この等価静的地震荷重を適用し た場合の各種応答値は、時刻歴応答解析結果をやや過大安全側に評 価する傾向にあるものの, D_s 値を乗じない支持架構弾性応答時の等 価静的地震荷重と同等の精度であることが確認できる。なお、 Fig.18(a)に例示するように、屋根鉛直応答が励起されない周期比 R_T ≧約 3.0 では等価静的地震荷重による各種応答値は時刻歴応答解析 結果と良好に対応する。

Fig. 17 Comparison of response acceleration on of NLRHAs and evaluations

7. 結

本研究の検討範囲で得られた結論を以下に示す。

- 一層支持架構付きラチスドームの D, 値と支持架構塑性率μは,主 に支持架構降伏時のベースシア係数 Cy や 2 次剛性比 p に比例す る。また、両者はトレードオフ関係にあり、Cy を低く抑えて設計 することは屋根部への入力低減(Ds 値→小)に効果的であるが、支 持架構の最大変位応答は増大(μ 値→大)する。海外で主流の BRB 付き骨組(BRBF)は屋根部入力の低減の点で最も効果的な耐震構 造であるが 1/100rad.を超える層間変形角応答を許容する必要があ る。日本で主流の BRB 付き骨組は、屋根部入力の低減効果は BRBF より劣るが、層間変形角応答も 1/200rad.程度に抑えることが出来 る。純ラーメン系の骨組は、Cy の増大に対して Ds 値を低く抑えら れるが、1/50rad.を超える層間変形角応答を許容する必要がある。
 2)層の必要保有水平耐力の下限を定める法規上の Ds 値を屋根部材 2 次設計の荷重低減係数にも準用することは、実態と乖離した危険 側判断の場合があり、屋根部材 2 次設計の荷重低減係数には、少 なくとも保有水平耐力に則した実効の Ds 値を用いるべきである。
- 3)入力地震動に対する D,値の変動は最大約 20%, 平均 4.7~6.3%であり,同塑性率µの変動は最大約 50%,平均 10~20%である。変動は C_yやpが小さい場合に大きくなりやすい傾向にあるが,全体として屋根スパン L,屋根に対する周期比 R_r との相関性は小さい。
- 4)屋根部稜線応答加速度は、Ds値と同様にCyやpに比例した低減効果が発揮される一方、屋根部の鉛直応答が卓越しにくいラチスドーム(屋根に対する支持架構の周期比Rrが2.0以上)では、鉛直方向応答加速度が弾性時より最大約1.5m/s²増大する場合がある。屋根部材力も同様の傾向を有する一方、その低減効果はpにあまり影響を受けず、鉛直方向応答加速度の増大の影響も受けない。
- 5)建物全体を復元力特性が等価な弾塑性一自由度系に置換して応答 評価する従来の理論は、Ds値と塑性率μの定性的な傾向を捉えられるが、支持架構付きラチスドーム構造の屋根部応答が励起する 範囲では解析結果を著しく危険側評価する。これに対して屋根部応答の励起を考慮した刺激関数値を用いる修正評価法を提案し、 Ds値の解析結果を良好な精度で安全側評価することを確認した。

Fig. 18 Comparison of NLRHA results and static analysis results

表による D,値を乗じた等価静的地震荷重は,屋根部稜線応答加速 度の時刻歴応答解析結果を概ね包絡する。この等価静的地震荷重 を適用した静的解析は,時刻歴応答解析結果をやや過大安全側に 評価する傾向にあるが,D,値を乗じない支持架構弾性応答時の等 価静的地震荷重を適用した場合と同等の精度を有する。

なお、本研究の D_s値の統計情報や修正評価法は、一層の支持架構 とラチスドームに対して得られたものであり、異なる屋根形状、多 層の支持架構、RC造の支持架構への適用拡大は続報にて報告する。 なお、本研究が対象とした構造特性係数 D_sは良好な評価精度を提示 できた一方で、Fig. 17(a3)や Fig.18 に示すように、現行の等価静的地 震荷重分布そのものに由来する地震応答の評価誤差は、今後の研究 による改善を期待する。

謝辞

本研究は JSPS 基盤研究(A)(No. 21H04581)の助成を戴きました。

参考文献

- Kato, S., Ogawa, T. and Kawaguchi, K.: History of Japanese seismic design and seismic design of spatial structures in Japan, Chapter 2, Spatial Structures Seismic Design and Realization in Japan, pp.19-44, AIJ, 2001.1 (in Japanese) 加藤史郎,小河利行,川口健一:日本における耐震設計法と空間構造の 耐震設計法の変遷,空間構造の耐震設計と設計例,第2章, pp.19-44, 日本建築学会, 2001.1
- Tatemichi I: The state of arts of seismic design of spatial structures in Japanese practice, Chapter 3, Spatial Structures Seismic Design and Realization in Japan, pp.45-66, AIJ, 2001.1 (in Japanese) 立道郁夫:空間構造の耐震設計の現状,空間構造の耐震設計と設計例, 第3章, pp.45-66, 日本建築学会, 2001.1
- 3) Kato, S., Konishi, Y., Nakazawa, S., Mukaiyama, Y. and Uchikoshi, M.: Equivalent lamped mass model of shell and spatial structures for earthquake response analysis in case that the super-structure is supported by a sub-structure, Journal of Structural Engineering, Vol.48B, pp.37-47, 2002.3 (in Japanese)
- 4) Takiuchi, T., Kato, S., Nakazawa, S. and Higashiyama Y.: Statically equivalent seismic loads based on two-mode-based approach for single layer reticulated shells, Engineering Structures, Vol. 260, 2022.6. https://doi.org/10.1016/j.engstruct.2022.114242
- 5) Yamada, S., Matsumoto, Y. and Saito E.: Static seismic load modeling using the continuum shell analogy for latticed cylindrical shell structures, Journal of Structural and Construction Engineering (Transactions of AIJ), No.610, pp.115-122, 2006.12 (in Japanese) https://doi.org/10.3130/aijs.71.115_3
- 6) Matsumoto, Y. and Yamada, S.: Equivalent lumped mass system and static seismic loading model for spatial structures having a latticed cylindrical roof, Journal of Structural Engineering, Vol.54B, pp.303-311, 2008.3 (in Japanese)
- 7) Sasahara, K., Huynh, T. H. and Matsumoto Y.: Evaluation method of seismic response by using mdof model and continuum shell analogy for single layer latticed cylindrical shell structures, Journal of Structural and Construction Engineering (Transactions of AIJ), Vol.79, No.705, pp.1647-1656, 2014.11 (in Japanese) https://doi.org/10.3130/aijs.79.1647
- Ogawa, T, Nakagawa, M. and Kumagai, T.: Earthquake response analysis of single layer lattice domes with response spectrum analysis, Journal of Structural Engineering, Vol.49B, pp.291-296, 2003.3 (in Japanese)
- 9) Takeuchi, T., Ogawa, T., Nakagawa, M. and Kumagai, T.: Response evaluation of medium-span lattice domes with substructures using response spectrum analysis, Journal of Structural and Construction Engineering (Transactions of AIJ), No.579, pp.71-78, 2004.5 (in Japanese) https://doi.org/10.3130/aijs.69.71_2
- 10) Takeuchi, T., Ogawa, T., Yamagata, T. and Kumagai, T.: Response evaluation of cylindrical lattice shell roofs with supporting substructures, Journal of Structural and Construction Engineering (Transactions of AIJ), No.596, pp.57-64, 2005.10 (in Japanese) https://doi.org/10.3130/aijs.70.57_4
- Takeuchi, T., Ogawa, T., Shirabe, H. and Kumagai, T.: Seismic response evaluation of lattice shell roofs supported by multistory structures, Journal of Structural and Construction Engineering (Transactions of AIJ), No.619,

pp.97-104, 2007.9 (in Japanese) https://doi.org/10.3130/aijs.72.97_4

- 12) Takeuchi, T., Kumagai, T., Okayama, S. and Ogawa, T.: Response evaluation of high-rise lattice domes with supporting substructures, Journal of Structural and Construction Engineering (Transactions of AIJ), No.629, pp.1119-1126, 2008.7 (in Japanese) https://doi.org/10.3130/aijs.73.1119
- Nair, D., Ichihashi, K., Terazawa, Y. and Takeuchi, T.: Higher mode effects of multistorey substructures on the seismic response of double-layered steel gridshell domes, Engineering Structures, Vol. 243, 2021.9 https://doi.org/10.1016/j.engstruct.2021.112677
- 14) Terazawa, Y., Nair, D., Ichihashi, K. and Takeuchi, T.: Equivalent static seismic load for middle to large span latticed domes considering roof antisymmetric mode amplified by substructure second mode, Journal of Structural and Construction Engineering (Transactions of AIJ), Vol.87, No.792, pp.194-204, 2022.2 (in Japanese) https://doi.org/10.3130/aijs.87.194
- 15) AIJ: AIJ Recommendation for Design of Latticed Shell Roof Structures, 2016.11 (in Japanese) 日本建築学会: ラチスシェル屋根構造設計指針, 2016.11
- 16) Kato, S. and Konishi, Y.: A study on seismic response estimation based on pushover analysis applied to reticular domes ?Investigation in case of domes with one predominant vibration mode-, Journal of Structural and Construction Engineering (Transactions of AIJ), No.561, pp.153-160, 2002.11 (in Japanese) https://doi.org/10.3130/aijs.67.153_2
- 17) Takeuchi, T., Ogawa, T., Nakama, A. and Kumagai, T.: Response evaluation of lattice dome supported by elasto-plastic substructures, Journal of Structural and Construction Engineering (Transactions of AIJ), No.596, pp.49-56, 2005.10 (in Japanese) https://doi.org/10.3130/aijs.70.49_4
- 18) Nakazawa, S., Saito, K. and Kato, S.: Seismic response and estimation for static seismic loads for latticed domes supported with braces of deterioration in stressstrain relationship due to buckling, Journal of Structural and Construction Engineering (Transactions of AIJ), No.608, pp.69-76, 2006.10 (in Japanese) https://doi.org/10.3130/aijs.71.69_4
- 19) Nakazawa, S., Yanagisawa, T. and Kato, S.: Evaluation of dynamic ductility index of steel gymnasiums based on pushover analysis, Journal of Structural and Construction Engineering (Transactions of AIJ), Vol.78, No.683, pp.111-118, 2013.1 (in Japanese) https://doi.org/10.3130/aijs.78.111
- 20) Nakazawa, S., Yanagisawa, T. and Kato, S.: Seismic loads for single layer reticular domes and seismic performance evaluation, Journal of Structural and Construction Engineering (Transactions of AIJ), Vol.79, No.703, pp.1287-1297, 2014.9 (in Japanese) https://doi.org/10.3130/aijs.79.1287
- 21) Wakayama, N, Nakazawa, S. and Takiuchi Y.: Study on evaluation of critical seismic intensity of arch structures using equivalent static seismic load, Journal of Structural Engineering, Vol.67B, pp.269-277, 2021.3 (in Japanese)
- 22) Kumagai T., Yamana, D., Yasuda, M. and Ogawa, T.: Elasto-plastic Seismic Response Behavior and Evaluation of Allowable Deformation of Single Layer Lattice Domes with Geometric Initial Imperfection -Part1 Elasto-plastic Seismic Response Behavior-, Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, pp. 985-986, 2016.7 (in Japanese) 熊谷知彦,山名大貴,安田三英,小河利行:形状初期不整を有する単層 ラチスドームの弾塑性地震応答性状および許容変形評価 その1 動的 弾塑性応答性状,日本建築学会大会学術講演梗概集,構造 I, pp.985-986, 2016.7
- 23) Yamana, D., Yasuda, M., Kumagai, T. and Ogawa, T.: Elasto-plastic Seismic Response Behavior and Evaluation of Allowable Deformation of Single Layer Lattice Domes with Various Half Open Angles, Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, pp. 855-856, 2017.7 (in Japanese)

山名大貴,安田三英,熊谷知彦,小河利行:半開角の異なる単層ラチス ドームの弾塑性地震応答性状および許容変形評価,日本建築学会大会学 術講演梗概集,構造 I, pp.855-856, 2017.7

24) Tokura, T., Yamana, D., Kumagai, T. and Ogawa, T.: Elasto-plastic Seismic Response Behavior and Evaluation of Allowable Deformation of Single Layer Lattice Domes with Various Shell-likeness Factors -Part1 Elasto-plastic Seismic Response Behavior-, Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, pp.821-822, 2018.7 (in Japanese)

土倉猛功,山名大貴,熊谷知彦,小河利行:シェルらしさ係数の異なる 単層ラチスドームの弾塑性地震応答性状および許容変形評価 その1

- 25) Nair, D., Terazawa, Y., and Takeuchi, T.: Equivalent static loads for doublelayered domes supported by multistorey buckling-restrained braced frames, Journal of Space Structures, Vol. 37, No. 4, pp. 227-260, 2022.6. https://doi.org/10.1177/09560599221097834
- 26) Kato, S. and Nakazawa, S.: Dynamic collapse characteristics of single layer reticular domes with substructure absorbing seismic energy due to strong earthquake motions, Journal of Structural and Construction Engineering (Transactions of AIJ), No.548, pp.81-88, 2001.10 (in Japanese) https://doi.org/10.3130/aijs.66.81
- 27) Kato, S., Takiuchi, T., Abe, K., Mukaiyama, Y. and Nakazawa, S.: Effectiveness of buckling restrained braces for upgrading earthquake resistant capacity of single layer grid dome, Engineering Structures, Vol. 261, 2022.6. https://doi.org/10.1016/j.engstruct.2022.114280
- 28) Nair, D., Terazawa, Y., Sitler, B. and Takeuchi, T.: Seismic response of longspan domes supported by multi-storey substructures, Journal of the International Association for Shell and Spatial Structures, Vol.61, No.2, pp.140-157, 2020.6 https://doi.org/10.20898/j.iass.2020.204.007
- 29) Kasai, K., Ito, K. and Watanabe, A.: Peak response prediction rule for a sdof

elasto-plastic system based on equivalent linearlization technique, Journal of Structural and Construction Engineering (Transactions of AIJ), No.571, pp.53-62, 2003.9 (in Japanese) https://doi.org/10.3130/aijs.68.53_4

- 30) The Japan Society of Seismic Isolation: Manual for Design and Construction of Passively-Controlled Buildings 3rd Edition, Daioh Co., Ltd., 2013. (in Japanese) 日本免震構造協会:パッシブ制振構造設計施工マニュアル第 3 版, 2013.
- Notification No. 1457 of the Ministry of Construction, 2000.5 (in Japanese) 建設省告示第 1457 号, 2000.5
- 32) Terazawa Y. and Takeuchi T.: Optimal damper design strategy for braced structures based on generalized response spectrum analysis., Jpn Archit Rev., 2019:00:1-17., accessed 2020.3.25, https://doi.org/10.1002/2475-8876.12122
- 33) Terazawa, Y., Sano, W. and Takeuchi, T.: Design method of seismically isolated structures based on generalized response spectrum analysis, Journal of Structural and Construction Engineering (Transactions of AIJ), Vol.85, No.775, pp.1187-1197, 2020.9 (in Japanese) https://doi.org/10.3130/aijs.85.1187
- 34) Manual for structural engineering of building standard law, the Ministry of Land, Infrastructure, Transport and Tourism, 2015. (in Japanese) 2015 年版構造関係技術基準同解説書,国土交通省,2015.

