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Introduction

Equivalent static lateral force method often forms the prec-
edent for seismic design of (regular) nonlinear multistorey 
buildings as prescribed by most design codes like the 
ASCE-7-16,1 NZS1170.5,2 Eurocode 83 and the Building 
Standard Law of Japan.4 For example, the ASCE-7-16 pro-
vides response reduction factors (R-factors1), to estimate 
the design base shear and the horizontal storey forces 
based on the type of buildings. However, gridshells are 
often treated as irregular or special structures owing to the 
complex roof-substructure interaction and closely-spaced 
multiple participating modes5,6 and therefore require 

advanced analyses. Modal response-spectrum analyses 
(RSA) is a relatively simple and efficient method often 
used to compute the peak response of elastic gridshell 
domes and are recommended in code specifications.6–8 
The method estimates the peak response of each 
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participating mode using the spectral acceleration of the 
elastic design spectrum and combines the modal responses 
as per the appropriate combination rule. In the context of 
gridshell structures, its application is limited to elastic 
structures as it can not be extended to domes with nonlin-
ear substructures as there are no prescribed scaling or 
response reduction factors for higher modes nor is it evi-
dent how multistorey substructures response estimated 
using the standard reduction factors can be applied for roof 
structures.5,6

Metal gridshells supported by substructures in regions 
of severe seismic hazard need to be designed to withstand 
the high seismic demand. The seismic response of roofs 
with simple symmetric lattice geometries like the arch, 
dome, and cylinder have been extensively studied by var-
ying the parameters like the span (30–150 m), half-sub-
tended angle (20°–40°), out-of-plane stiffness, rise-to-span 
ratios, and substructure stiffness.6,7,9–13 It was found that 
increasing the out-of-plane bending stiffness of the mem-
bers prevented failure due to buckling that is common in 
single-layer roofs. The number of participating modes are 
also reduced and the response can be simply estimated as 
a function of four dominant modes – three anti-symmetric 
modes (‘O1’, ‘O2’ and ‘O2.5’) and an in-plane mode 
‘I’.5,7,14 For roofs with supporting substructures, the seis-
mic input amplifies up the substructure height and the 
substructure roof’s horizontal acceleration acts as the 
input for the gridshell roof. The geometry and dynamic 
characteristics of gridshell lead to its coupled horizontal 
and anti-symmetric vertical roof response. In an attempt 
to develop equivalent static loads, these elastic substruc-
ture-roof interactions have been investigated13,15 and 
quantified as horizontal and vertical amplification factors 
that are functions of the substructure to roof’s period 
ratios. The vertical response was found to amplify by up 
to three times the input horizontal seismic input at the 
substructure roof level.7 Further increasing the height of 
the substructure leads to increased participation from the 
higher substructure modes and the interaction between the 
higher substructure modes (in linear range) and dominant 
roof modes have also been quantified as higher mode 
amplification factors.16

Gridshell roofs are often employed in school gymnasi-
ums or community centres which are expected to be func-
tional as shelters even after a big earthquake in countries 
of high seismic hazard like Japan. Consequently, it 
becomes important to design such structures with seismic 
response control strategies. One efficient solution to limit 
the roof seismic demand by decreasing the peak substruc-
ture response is to add damping devices such as the hyster-
etic buckling-restrained braces (BRB) to the substructure 
frames17 and the response estimation of such systems have 
also been studied8,13,18,19 using Kasai’s equivalent lineari-
sation method.20,21 This lowered demand enables the engi-
neers to design the roofs such that they remain elastic and 

the reduced roof acceleration also ensures the seismic per-
formance of acceleration sensitive non-structural compo-
nents such as ceilings and lighting equipment. Practical 
applications of employing passive-control devices include 
the Toyota stadium,22 Shimokita dome23 and other seismic-
retrofit projects of high-school gymnasiums.24,25 While 
there exists well-established response-reduction factors 
for design and estimation of the inelastic design spectra of 
conventional BRB frames,26,27 their application to sub-
structures of curved gridshell roofs has not yet been 
explored. Therefore, as neither reliable static load proce-
dures nor realistic R-factors are available for such struc-
tural systems, the time- and data-intensive nonlinear 
response history analysis (NLRHA) is often the only 
design route. With an aim to improve the preliminary 
design of such double-layered domes, this paper investi-
gates the applicability of the ductility-based reduction fac-
tors (labelled as the ‘R-factor approach’) to estimate the 
peak substructure response using RSA which is used to 
propose equivalent static forces of the dome. The response 
of simpler single-storey substructures are first studied, and 
the response estimation methods are compared with the 
equivalent linearisation approach. The higher mode effects 
of multistorey substructures are then investigated using 
higher mode amplification factors for two-storey and six-
storey analysis models and the results are verified using 
nonlinear response history analyses.

Seismic response characteristics of 
double-layered domes

Past studies on the seismic response of gridshell 
domes7,8,13,14 have revealed that in addition to horizontal 
accelerations, double-layer domed gridshell roofs with 
some rise are excited not only in the horizontal direction 
but also experience large anti-symmetric vertical accel-
erations when subjected to horizontal earthquake ground 
motions (Figure 1(a)). In the case of relatively thin lattice 
domes, a large number of vibration modes with similar 
periods significantly participate in the response.14 
Nevertheless, it has been observed that when the out-of-
plane stiffness of the roof is large (typical of double-lay-
ered domes5), the response characteristics are 
predominated by four prominent modes which are 
denoted as O1, O2, O2.5, and I shown in Figure 1(b),7,13,16 
where O1 is the fundamental mode and has an asymmet-
ric modeshape with one crest and one trough (Figure 
1(b)). The O2 mode is the next higher mode with two 
crests and two troughs with high amplitude in the centre 
wave, followed by the O2.5 mode that is similar to the O2 
mode but has lower amplitudes. The fourth mode is the 
in-plane mode I, which has the shortest period as the in-
plane stiffness of double-layered domes is relatively 
high. Equivalent lateral forces have also been proposed 
for medium-span domes with single-storey substructures 
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using amplification factors (that quantify the roof-sub-
structure interaction considering the four predominant 
roof modes).7 To extend this method to multistorey sub-
structures, horizontal and vertical amplification factors 
were proposed to estimate the roof response generated by 
higher multistorey substructure modes in interaction with 
the four roof modes.16 Finally, a generalised equivalent 
static design procedure was developed (Figure 2) for 

domes with multistorey substructures and validated 
against RSA, comparing against both the nodal displace-
ments and member forces.15,16

Peak substructure response

This section introduces the equivalent static load proce-
dure and discusses two R-factor approaches and an 

Figure 1. Seismic response characteristics of domes with substructures under horizontal seismic loading7: (a) coupled horizontal 
and vertical response and (b) four predominant modes (and modeshapes) of a double-layered dome.
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equivalent linearisation approach to estimate the peak sub-
structure acceleration of a yielding substructure.

The peak substructure roof acceleration (AHeq) is the 
seismic input for the dome and is the first step in the pro-
posed equivalent static load procedure for linear double-
layered domes with elastic substructures.15,16 The 
substructure is modelled as a simple lumped-mass model 
as shown in Figure 2 with the roof modelled as a rigid 
mass ( M R ) and the peak substructure acceleration is com-
puted using response-spectrum analysis. The substructure 
acceleration for each participating mode is then multiplied 
by corresponding horizontal and vertical amplification 
factors to obtain the peak acceleration distributions of the 
dome using an assumed mode shape (usually the dominant 
mode O1).7,16 The amplification factors quantify the roof-
substructure interaction defined by the substructure to roof 
period and mass ratios.7,13,16 These roof horizontal and ver-
tical accelerations (Figure 2) are then multiplied by the 
nodal masses to obtain the equivalent inertial static forces.

Inelastic accelerations: RSA and R-factor

The total force reduction factor (or the response modifica-
tion factor R ) for idealised bilinear systems is derived as 
follows (Uang28) in equation (1) and Figure 3(a), where Rµ 
is the ductility reduction factor and Ω is the structural 
overstrength factor. Rµ accounts for the reduction in the 
elastic design force because of the energy dissipation 
capacity and the reserve strength that exists between the 
actual structural yield level and the first yield level is 
defined as Ω.28 Rµ is therefore defined as the ratio of the 
elastic strength demand to the inelastic strength demand 
(equation (1)28) and is used to derive the inelastic seismic 
acceleration spectrum.

 R R R
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y i
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( = )µ µ

µ

µ µ
Ω  (1)

Newmark-Hall methodology. The Veletsos-Newmark-Hall 
methodology30 (labelled and referred to as the ‘Newmark’ 
method hereon) is one of the earliest and commonly used 
methods to derive the inelastic seismic design spectra 
(Figure 3(b)), where the 5% damped spectrum for the 
elastoplastic system is obtained by drawing a curve simi-
lar to that of the elastic system but displaced downward 
by the reduction factor. The reduction factor proposed 
depends on the position of the period on the spectrum.

•• For constant-acceleration region of the spectrum 
where the equal energy rule applies,30 where the 
area under the load-deformation diagram up to the 
maximum deformation is the same as that of an 
elasto-perfectly plastic system:

 
Rµ µ= 2 1−

 (2)

•• For constant-velocity region of the spectrum where 
the equal displacement rule applies30:

 Rµ = µ (3)

Nassar and Krawinkler. To estimate the inelastic strength 
demands, strength reduction factors Rµ were derived as a 
function of the target ductility ratio µ and the period T , 
using a least square fit regression analysis for a single 
degree of freedom system with post-yield stiffness ratios 
( p ) of 0%, 2%, and 10% subjected to 39,000 time history 
analyses for T = 0.1–4.0 s, µ = 1–8 for a damping of 5%31 
given in equation (4) (labelled and referred to as the ‘N&K’ 
method hereon)
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where a = 1  for p <=  2%, a = 0.8  for p =  10% and 
b = 0.42,0.37  and 0.29  for p =  0%, 2%, and 10% 
respectively.

Lee and Han. Lee et al.32 further studied the reduction fac-
tors for different hysteretic models and proposed Rµ as a 
function of the period and ductility using a two-stage 
regression analysis. The equations for elasto-perfectly 
plastic models are given in equations (5) and (6).

 R A B Tµ = {1 ( )}0 0− − ×exp  (5)

 A B0 0
0.83= 0.99 0.15; = 23.69× + × −µ µ  (6)

For comparison, the reduction factors obtained from the 
three methods are plotted below considering a fundamen-
tal period in the short-period range as 0.4 s (period of the 
benchmark single-storey model discussed later) and elas-
toplastic behaviour.

While these ductility reduction factors were proposed to 
develop the inelastic response spectra to estimate the design 
base shear for elastoplastic models, in this study, these duc-
tility reduction factors are used to estimate the approximate 
peak spectral acceleration of the substructure as a function 
of the obtained period and the target roof displacement duc-
tility. The acceleration reduction ratio Ra  is defined as the 
ratio of the peak inelastic acceleration to the peak elastic 
acceleration which can be computed using the inverse of the 
ductility reduction ratio30 as shown in equation (7). For this 
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study, from hereon, the two most conservative methods – 
Newmark and N&K methods (Figure 4) are considered and 
discussed for the estimation of peak substructure accelera-
tion using the R-factor approach.

 R
A

A
R

Ra
eq

a= ; =
11

1
 (7)

Inelastic accelerations: RSA and equivalent 
linearisation

An alternative simplified theory for estimation of the peak 
inelastic response of any bilinear system is the equivalent 
linearisation method proposed by Kasai and Ito.20,21 It uses 

mathematical expressions as a function of the dynamic 
properties of the system to consider the effect of period 
shift as well as the effect of damping by evaluating the dis-
sipated energy. The multistorey building is idealised as an 
SDOF (single-degree of freedom) model and the target 
ductility is iterated to obtain a more accurate ductility 
value which is a function of the achieved damping and the 
secant stiffness ratio which in turn is a function of the duc-
tility. The proposed reduction in displacement Rd  and 
acceleration (or force) Ra  depends on the stiffness of the 
frame, braces, and the energy dissipation devices.

The equivalent stiffness (Keq) and equivalent damping 
ratio (heq ) of the system are obtained using the equivalent 
linearisation procedure. For each of the participating 
modes (where i  = mode number), a starting value of duc-
tility ratio (target ductility) µti is assumed and heqi  and the 
equivalent stiffness ratio Keqi /K i1  are iterated using equa-
tions (8)–(11) until µi converges, where K i1  is the initial 
stiffness, Dh  is the reduction factor to adjust the damping 
ratio from the base damping ratio hoi  (5% in this study) for 
periods less than 2 s, and the subscript ( )j  is the jth  step 
of the iteration.18,20 The equivalent (secant) period Teqi  is 
then computed using equation (12).20
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Figure 3. (a) Idealisation of structural response and R  factors, Picture taken from Uang.28 (b) Construction of design spectra, 
Picture taken from Riddell et al.29
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For each of the participating modes, the reduction in dis-
placement Rd  and acceleration Ra  can then be computed 
as a function of the periods Teqi  and Ti  using equations 
(13)–(16)20 depending on the regions of the spectrum the 
periods lie. This method is labelled and referred to as the 
‘Kasai’ method hereon.

1. For Ti  and Teqi  in the constant acceleration region:
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2. For Ti  in the constant acceleration region and Teqi  
in the constant velocity region, where Tc  is the cor-
ner period (in this study, Tc  = 0.52 s as described 
later in Figure 7):
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3. For Ti  and Teqi  in the constant velocity region:

 R D
T

Tdi hi
eqi

i

=  (15)

The reduction in acceleration may then be computed 
using equation (16).20,21 For comparison of response with 
the other methods based on the R-factor approach, Rµi  
from this method may then be defined as the inverse of the 
reduction in acceleration as given in equation (16).

 R R
T

T
R

Rai di
i

eqi
i

ai

= ; =
1

2








 µ  (16)

Analysis models: Single-storey 
substructures

First, the peak substructure response of simple single-
storey analysis models are discussed in this section to 

compare the response from each of the response estima-
tion methods.

Design acceleration spectrum

A site with high seismic hazard from the southern 
California region was chosen to develop a 5% damped 
DBE (design basis earthquake) acceleration spectrum 
(Figure 7) using the ASCE 7-16 procedure1) with  
S gDS = 1.4  (short period spectral acceleration), 
S gD1 = 0.73  (spectral response acceleration at a period of 
1 s), and T sL = 8  (long-period transition period obtained 
from Figures 22 to 14 of ASCE 7-161).

BRBF substructure model

The 60 m spanned substructure has one storey 5 m high 
and the roof dead load was assumed to be 2 kPa (consider-
ing a structural weight of about 1 kg/m2 for every metre of 
span,33 a 15% allowance for the connections, and 1.3 kPa 
nonstructural dead load). It was assumed that all the lateral 
forces are resisted by the buckling-restrained braces 
(BRBs34) placed along the perimeter in a diagonal configu-
ration, and so in the 3-d ETABS35 analysis substructure 
model shown in Figure 5(a), all the beams and columns 
were modelled using elastic beam and column elements 
with the section sizes listed in Table 1. The roof is mod-
elled as a rigid mass in the substructure model. The BRBs 
for the substructure (Figure 5) were designed for the verti-
cally distributed forces obtained as per ASCE 7-16,1 where 
hx  is the height from base to level x  and k  is taken as 2 
(equation (17)), Sa is the design acceleration obtained for 
the code-defined approximate fundamental period 
T C ha t n

x= ×  ( Ct = 0.073  and x = 0.75  for steel BRBFs as 
per Table 12.8.1 of ASCE 7-161), R  was taken as 8 (as 
recommended for BRBFs as per Table 12.2.1 of ASCE 
7-161), Ie  was assumed as 1, giving a base shear ratio 
Cb = 0.2 , Vx  is the storey shear, BRB Vx  is the storey 
shear resisted by the BRBs (in this study 100%) and BRB 
Vix  is the storey shear resisted by each BRB as given in 
Table 2.
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Table 1. L60: Substructure model data.

(a) Storey heights and seismic weights (b) Section sizes (σ y  = 325 MPa)

Storey Height (m) Weight (kN) Member Section shape Section size (mm)

RFL 5 6064 Column SHS 450× 450× 25
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Three combined models were designed to include sub-
structures with different BRB design yield displacements. 
Note that for design of the substructure frame sections and 
the BRBs, the substructure models were adopted to repre-
sent the 3-d combined model as a lumped mass SDOF 
model shown in Figure 5(a). This idealisation enables the 
substructures of gridshell domes to be designed using the 
same code based simplified design procedures as pre-
scribed for regular multistorey buildings. The substructure 
model for the Model-B (benchmark model) is shown in 
Figure 5(a) and was designed with a standard BRB yield 
drift ratio of 1/750.34 A second model (Model-A) was 
designed for the same design base shear with a shorter BRB 
yield displacement of 0.06% such that the fundamental 
period is shorter and lies on the constant-acceleration 
region of the spectrum (Figure 7) and a third model 
(Model-C) was designed with a longer BRB yield displace-
ment of 0.2% with the fundamental period in the constant-
velocity region as given in Table 2. The axial 
force-displacement of BRBs were determined following 
the design guidelines by Takeuchi and Wada34 and the BRB 
parameters are given in Table 2. In the analysis FE model, 
the BRBs have been modelled as links35,36 with bilinear 
hysteretic characteristics and a post-yield stiffness ratio ( p
) of 2% typical of BRBFs.34 However, in countries like 
Japan, due to the relatively cheap fabrication costs of 
moment-resisting frames (MRFs) using box columns and 
high-strength steel,34 moment frames are often adopted as 
lateral-force resisting systems (also known as the dual 

systems) which remain elastic even after the dampers yield. 
Consequently, the post-yield stiffness of such substructures 
are much higher than those of BRBFs designed using 
pinned connections in the USA. Therefore, to investigate 
and validate the response estimation methods for such 
models with high post-yield stiffness, additional substruc-
ture models with p  = 10% and 25% were created keeping 
the yield displacements the same across all models of the 
same series. The p = 25%  models are representative of 
BRBF substructures in Japan34 which adopt rigid moment 
connections in the supporting frames such that the stiffness 
provided by the damper to the stiffness of the supporting 
moment frame ratio (referred to as the ‘K Kd f/ ’ ratio34) 
has a typical value of ‘ K Kd f/ = 3 ’.8,34 The p = 10% 
models are representative of substructures with post-yield 
stiffness in between the p = 2%  and p = 25%  models. 
These are typically seen in substructures without MRFs but 
with additional post-yield stiffness contributions from con-
nections, gusset plates, and other non-structural compo-
nents like the parapets. Additional models with p = 0%  
were also constructed to validate and confirm the 
approaches proposed for elastoplastic SDOF systems.

Roof model

The double-layered dome was designed for a span of 
60 m and a half subtended angle (θ ) of 30°. The lattice 
member sizes and vertical offsets ( d ) between the sec-
tion centrelines are listed in Table 3. For simplicity, the 
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Figure 5. Single-storey substructure model and roof model: (a) Substructure model and (b) roof model.
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double-layer lattice (Figure 5(b)) was modelled using 
equivalent beams with out-of-plane stiffness modification 
factors16 with moment connections and pinning the roof 
lattice perimeter nodes. This dome model was used to 
identify the roof modes and is denoted as the ‘roof model’. 
The fundamental period of the roof ( TR ) was found to be 
0.22 s with the roof exhibiting the anti-symmetric O1 
mode shape.7,13

The combined analysis models were then constructed 
combining the roof model and substructure model. The 
design of roof members were checked by performing 
NLRHA analysis on the combined model using the load 
combination of 1.2DL + EQ (as per Section 2.3.6 of 
ASCE-7-161) and ground motions specified in Figure 7 to 
check the member forces against their design strength as 
per the guidelines in AISC 360-16.37 The roof geometry 
was modelled in Grasshopper38 and imported to ETABS35 
for analysis. The roof member beams in ETABS were 
modelled as ‘frame’ objects which are general three-
dimensional beam elements.36

The periods and mass participation of the first two 
modes (Γx  in the direction of seismic input) of the com-
bined model (Model-B) are shown in Figure 6. The first 
mode is the substructure T1 mode oscillating in-phase 
(labelled as ‘O1 + T1’) with the roof’s dominant O1 
mode.7 The second mode exhibits the two modes oscillat-
ing out-of-phase (labelled as ‘O1-T1’) . This implies that 
only the O1 roof mode governs the dynamic response and 
the contribution of higher roof modes (like the O2, O2.5, 
or I mode is negligible). This is due to the fact that the 
substructure period ratio is long and therefore has inter-
action with only the roof’s dominant O1 mode. The 

effects of substructure stiffness and period ratio on the 
dominant modes have been discussed in detail in previ-
ous studies.7,16

Input ground motions

11 natural ground motions were selected from the Pacific 
Earthquake Engineering Center strong motion database.39 
An initial suite was obtained using a standard search criteria 
of minimum magnitude of 6.5, a maximum magnitude of 
7.5, and maximum shear velocity of 400 m/s. Eleven of the 
selected ground motions (Horizontal-1 direction) listed in 
Table 4 were then spectrally matched to the design spectrum 
(in accordance with Section 16.2 of ASCE 7-161) such that 
the average of the spectra for the suite equals or exceeds 
110% of the 5% target design spectrum over the period 
range of 0.2T1–1.5T1 where T1 was considered as 0.4 s (the 
fundamental period of benchmark Model-B). The response 
spectra of the 11 matched ground motions and the average 
of their spectra (labelled as ‘Mean’) are shown in Figure 7.

For NLRHA performed on the combined models 
using these spectral matched waves, Rayleigh damping 
of 5% was assigned to the first and second mode and the 
analysis was performed using the integration approach 
using the Hilber-Hughes-Taylor (HHT) method.35,36 
Two additional levels of ground motion intensity were 
considered to investigate the response at maximum-
considered earthquake (MCE) level (1.5 ×  DBE level as 
prescribed by the ASCE-71) and the serviceability level 
(SLE = 0.2 ×  the DBE level). As ASCE does not have a 
defined SLE design level, for this study, the SLE spec-
trum spectrum was defined by retaining the shape of the 

Table 3. Roof models: member section sizes (σ y  = 325 MPa).

Model Dead load 
(DL) (kPa)

Double-layer beam 
(mm)

Offset d  
(cm)

Single-layer beam 
(roof member) (mm)

m Tension 
beam (mm)

L 60 2 2×φ 165.2 t 7.1∗  150 φ 307.5 t 7.5∗ 50.1 φ 816 t 16

*φ = outer diameter; m =  out-of-plane stiffness modification factor; t =  thickness of circular hollow section.

Table 2. Equivalent lateral forces: proportioning BRBs using R = 8 .

Storey h  (m) Wx  (kN) Vx  (kN) BRB Vx  (kN) BRB Pi  (kN) δ y  (mm) BRB Keqi  (kN m/ ) Lt  (m) σ y  (MPa) Ac  (mm2)

Model-A (T s1 = 0.3 )

RFL 5 6064 1061 1061 54 1.85 29160 6.4 90 600

Model-B (T s1 = 0.4 )

RFL 5 6064 1061 1061 54 4.12 13125 6.4 235 230

Model-C (T s1 = 0.5 )

RFL 5 6064 1061 1061 54 6.17 8748 6.4 235 230

Ac: area of core in plastic zone; Keqi: equivalent axial stiffness; Lt: total BRB length; Pi: yield axial force; δy: yield axial deformation.34
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DBE spectra as is common practice in countries like 
Japan and New Zealand, and then scaling it by 0.2 (fol-
lowing the average ratio between the SLE and DBE 
design spectra of typical seismic codes as reviewed by 
Chandler and Duan40).

Comparison of peak substructure response

For each of the three substructure models, the elastic 
design spectral acceleration ( Sa1 ) was used to obtain the 
elastic base shear (V1 ) and then extrapolate the maximum 

Mode-1: O1+T1 (0.47s), Γ
x1

=99.5% Mode-2: O1-T1 (0.22s), Γ
x1

=0.4% 

Figure 6. Model-B: combined model mode shapes.

Table 4. Input ground motions.

Ground motion no. Earthquake* Year Station name M Rjb  (km) PGA (g)

1 Trinidad 1980 Rio Dell Overpass E-Ground 7.20 76.06 0.16
2 Spitak Armenia 1988 Gukasian 6.77 23.99 0.20
3 Loma Prieta 1989 Emeryville; Pacific Park 6.93 76.87 0.25
4 Loma Prieta 1989 Fremont – Emerson Court 6.93 39.66 0.19
5 Loma Prieta 1989 Hayward – BART Station 6.93 54.01 0.16
6 Loma Prieta 1989 Sunnyvale – Colton Ave 6.93 23.92 0.21
7 Northridge-01 1994 LA – 116th St School 6.69 36.39 0.21
8 Northridge-01 1994 LA – Baldwin Hills 6.69 23.50 0.24
9 Northridge-01 1994 LA – Cypress Ave 6.69 28.98 0.22
10 Northridge-01 1994 LA – N Faring Rd 6.69 12.42 0.28
11 Northridge-01 1994 LA – Obregon Park 6.69 35.43 0.36

M: moment magnitude; PGA: unscaled peak ground acceleration; Rjb : closest horizontal distance between the vertical projection of the rupture 
plane and recording station.
*These records were obtained from the NGA-West2 online ground motion database tool39.
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Figure 8. Single-storey Model-B: Reduction factors as functions of achieved displacement ductility: (a) p = 0%, (b) p = 2%, (c) 
p = 10%, and (d) p = 25%

elastic substructure roof displacement ( D1
) at the sub-

structure roof level (point A of Figure 5(a)) from the ini-
tial stiffness (K1 ) as shown in equation (18). The 
maximum roof level acceleration (point A of Figure 5(a)) 
A1 of the substructure is obtained from the corresponding 
roof displacement and the fundamental period and the 
response spectrum (Sa1) as shown in equation (18). The 
reduction factors (Rµ and Ra ) were then computed follow-
ing equations (2)–(4) from the target ductility µt using 
equations (7) and (19). For the equivalent linearisation 
approach, equations (8)–(16) were used. The mean 
responses obtained from the NLRHA performed on the 
combined models were also used to obtain the mean dis-
placement ductility and reduction factor using equations 
(20) and (21).

 V M S D V K A Da1 1 1 1 1 1 1 1
2= = / = ω  (18)

 µt = D1 / Dy (19)

 µNLRHA = Dmean / Dy (20)

 
R V VNLRHA meanµ− = /1  (21)

To compare the peak substructure responses from all 
the methods against the NLRHA results, the reduction in 
acceleration R A Aa eq= / 1  and Rµ is plotted against the 

displacement ductility µNLRHA for Model-B in Figure 8. 
When the structure is subjected to SLE level earthquakes, 
the obtained ductility values are close to 2 with a small 
reduction in response. When the intensity of the earth-
quake is increased to DBE level, the mean ductility values 
increase to a range of 8–14 depending on the post-yield 
stiffness. For MCE levels, the values increase further to 
15–20, but the reduction in response (Ra ) is not linearly 
proportional to the increase in ductility. The results in 
Figure 8 exhibit a nonlinear relationship between Rµ and µ 
that is similar to the nonlinear Rµ and µ curve proposed by 
Newmark for short-period structures in Figure 4. The 
results also suggest that for short period structures, the 
actual ductility reduction factors (from NLRHA) do not 
strictly follow either the equal energy (equation (2)) or the 
equal displacement rule (equation (3)) but lie between the 
two Newmark factors as can be seen from the dotted lines 
in Figure 8(a) and (b). Therefore, for short-period models 
with low post-yield stiffness ( p < 10%), the Newmark 
method provides the most conservative estimates of the 
acceleration if compared to those obtained from the 
NLRHA.

For a detailed comparison between the two most con-
servative methods, the errors in estimation of the response 
against the NLRHA response for the DBE levels have been 
shown in Table 5. As the post-yield stiffness increased, the 
reduction ratio Ra  obtained from the NLRHA and Kasai 
method increased but the R-factor methods estimated 
lower peak accelerations assuming an elastoplastic 
response. However, as the Newmark method is conserva-
tive for short-period structures with elastoplastic response 
(with 39% overestimation of the Ra  value for p = 0%  in 
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Table 5. Single-storey Model-B: Errors in estimation of DBE response against the NLRHA response.

Method % error in Rµ estimation % error in Ra  estimation

p = 0% p = 2% p =10% p = 25% p = 0% p = 2% p =10% p = 25%

Newmark –47 –41 –12 +40 +39 +37 +2 –31
Kasai −2 –10 –14 –13 –25 –10 +5 +12

+ ve % error indicates the estimated value is more than the NLRHA value and vice-versa.

Table 6. Single-storey models: Kasai method’s equivalent linearisation results, p = 2%.

ho1 heq1 Keq1 / K1 Dh Rd Ra µt1
T1 Teq1 TR

Model-B-SLE 0.05 0.12 0.58 0.75 1.11 0.64 1.77 0.45 0.59 0.23
Model-B-DBE 0.05 0.44 0.10 0.43 1.55 0.16 8.87 0.45 1.41 0.23
Model-B-MCE 0.05 0.47 0.07 0.42 1.90 0.12 13.31 0.45 1.77 0.23

Table 5), the Newmark method remained conservative for 
models with higher post-yield stiffness as well (Figure 
8(b) and (c) and Table 5). As the post-yield stiffness further 
increased to 25%, the Newmark method estimates became 
unconservative with the error increasing to 31%. This con-
firms that even though Newmark method has been pro-
posed for elastoplastic systems, it may be applied for 
short-period structures with post-yield stiffness of up to 
10%. Finally, among the discussed estimation methods, 
Kasai’s approach (Table 6) provides the most accurate esti-
mate of the response to that obtained from NLRHA for all 
cases as this approach is more mathematical and less 
empirical, making it applicable to any bilinear system. The 
actual ductility values and damping ratios are estimated, 
leading to better accuracy in response estimation.

Peak roof response

Substructure T1 mode amplification factors

The substructure-roof interactions for single-storey struc-
tures are defined by the amplification factors FH1  and FV1

7 
that depend on the mass (RM) and period (RT) ratios7 given 
in equation (22). These are characterised as ratios of the 
effective modal mass (Meq ) and fundamental period (T1) of 
the substructure model, which includes the roof mass, rela-
tive to the total roof mass (M R), and period of the (domi-
nant) fundamental roof O1 mode (TR).7,16 The mass ratios 
increase as the substructure gets heavier (such as in the case 
of an RC substructure which tends to be much heavier than 
a steel frame counterpart). Similarly, the period ratios may 
decrease as the substructure becomes stiffer (such as when 
the substructure frame sizes increase).16 Such heavy sub-
structures with RT1 < 1.5  and RM > 2  produce higher 
amplification between the T1 and O1 modes due to reso-
nance, as noted by Takeuchi et al.7 To account for this reso-
nance induced amplification, the amplification factors have 

been modified to FH
’  and FV

’  (when RT1 < 1.5  and 
RM1 > 2 ), as given by equations (25) and (26).7

The proposed amplification factors FH1  and FV1  are 
defined by equations (23)–(26).7 A vertical calibration fac-
tor Cvθ  (equation (24)) of 1.85θ  was adopted as previ-
ously proposed based on a numerical study investigating 
the influence of the half-subtended angle on the peak verti-
cal acceleration.7 After obtaining the peak substructure 
response s HeqA , the peak roof accelerations of the com-
bined model c HA  and c VA  are estimated using the ampli-
fication factors and the dominant roof O1 mode shape 
adopted for the envelope, which has the horizontal and 
vertical distributions given by equations (27) and (28),7 
where x  and y  are the coordinates of roof nodes, the roof 
centre is located at { x , y } = {0,0} and L  is the span of the 
dome. Note that in this paper, the preceding subscripts  
r , s , and c  refer to the roof, substructure, and combined 
models, respectively.
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In previous studies,13,18 for the Kasai’s equivalent lineari-
sation approach, the period ratios were computed using the 
substructure’s inelastic periods RTeq1

13 and the rationale 
behind this assumption has not been confirmed yet. 
Therefore, to investigate the relationship between the ampli-
fication factors and the inelastic period ratios, the vertical 
amplification factors computed from the mean NLRHA 
response divided by the peak substructure acceleration 
F A AV c Vmax s Heq= /  have been plotted against the elastic 
(RT1) and inelastic (RTeq1) period ratios (equation (29)).

 R
T

T
R

T

TT
s

r R
Teq

s eq

r R
1

1
1

1= ; =  (29)

It was observed that the obtained amplification factors 
plotted against the elastic period ratios (Figures 9(a) and 
10(a)) are in better agreement as opposed to the plots against 
the inelastic period ratios (Figures 9(b) and 10(b)). The larg-
est errors between the proposed curves and the obtained fac-
tors were observed for the p = 2%  and p = 10%  models 
as can be seen in Figure 9(b). As the post-yield stiffness 
increases, the more conservative the proposed factor 
becomes. The horizontal amplification factors have also 
been plotted for comparison as F A AH c Hmax s Heq= / . In case 
of horizontal amplification, the errors in the calculation 
remain the same as the horizontal amplification factor 
becomes constant at 1 ( FH1 = 1 ) for all period ratios larger 
than 1.25 ( RT1 > 1.25 ). Therefore, in this study, the more 
accurate elastic period ratios (equation (22)) are adopted for 
the computation of the amplification factors.

Direct-R method

The ‘Modal response spectrum analysis’ method in 
ASCE-7-161 recommends calculation of design level 
force-related parameters by dividing the elastic response 
directly by R Ie/  (= 8 in this study). Therefore, another 
straightforward method of estimating the DBE-level 
response is to divide the peak elastic roof response directly 
by the R-factor as shown in equation (30). However, there 
is no explicit commentary on modification of this factor 

for models with post-yield stiffness. Furthermore, employ-
ing a single reduction factor for all modes to estimate the 
peak accelerations may underestimate the overall response 
as the actual reduction in acceleration depends on the 
achieved target ductility and additional modal damping. 
The higher substructure modes may not achieve such high 
levels of ductility as assumed in this approach. In addi-
tion, since the method is fundamentally derived from the 
‘equal-displacement rule’ (assuming the structures are in 
the constant-velocity region), the applicability of this 
method to models with fundamental periods in the  
constant-acceleration region (or short-period range) has 
not been proven yet. Therefore, to illustrate the applicabil-
ity of this method, it is also used for computing DBE level 
response (using a reduction factor of R = 8 ) for compari-
son and is labelled as the ‘Direct-R’ method hereon.

 R
Ra =
1

 (30)

Comparison of peak roof response

The peak roof accelerations for the Model-A, Model-B 
and Model-C were calculated using the first mode amplifi-
cation factors in equations (23)–(28). For the equivalent 
linearisation approach, s HeqiA  was computed considering 
the effect of both the period shift and the damping13 using 
equations (8)–(16). For the R-factor approach methods, 
the peak substructure acceleration was obtained using 
equation (7). The proposed ridgeline A-O-A′ (Figure 5) 
accelerations are compared with the mean NLRHA results 
in Figures 11 and 12.

When the post-yield stiffness ratio ( p ) is low (Figure 
11), the peak substructure accelerations for Model-C in the 
constant velocity region obtained from the Newmark and 
N&K method were nearly equal to the peak accelerations 
obtained from Kasai’s method leading to similar accuracy 
in the overall roof response. Model-A exhibited the largest 
amplifications in both the horizontal and vertical direc-
tions as the substructure periods were closest to the roof’s 
period (smallest period ratio RT ) among the three models. 
In small ductility regions (Figure 11 SLE results), all 
methods give reasonably accurate results. In large ductility 
regimes like the DBE and MCE levels, for structures with 
fundamental periods in the constant velocity region 
(Model-C), all R-factor methods estimate the DBE 
response with reasonable accuracy although the Kasai 
method is the most conservative, and the Newmark method 
presents the most conservative response estimates for 
models in the constant acceleration region (Model-A and 
Model-B). The differences in the Newmark and Kasai 
methods may further be understood by considering the 
example of Models A and B and their MCE response in 
Figure 11(a) and (b). Both models have periods in the con-
stant acceleration region and therefore have the same 
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Figure 9. Vertical amplification factors w.r.t period ratios: (a) period ratio calculated using T1 and (b) period ratio calculated using Teq1.

horizontal elastic accelerations ( A1 ≈ 23 m/s 2 ). In addition, 
both models have nearly the same target ductility value for 
MCE levels ( µt ≈13 ), and so the Newmark method gives 
Rµ = 5 (following equation (2)) for both models resulting in 
identical peak substructure acceleration (AHeq1 ≈ 4.5 m/s 2  as 
can be seen from the ‘Newmark’ horizontal response). 
However, the AHeq1  from the NRLHA and Kasai method 
differ for the two models. This illustrates the shortcoming 
of the Newmark method which considers the effect of duc-
tility while the effect of energy dissipation is implicitly 
accounted for by the backbone elastoplastic curve using 
the equal energy rule, and therefore may not always be 
accurate in estimating the maximum response values. The 
iterative equivalent linearisation approach better captures 
the energy dissipation by considering the equivalent 

viscous damping as well as the effect of period elongation 
which is quantified in equations (13)–(15) by the Kasai 
method20,21 and is different in the two models.

When the post-yield stiffness ratio ( p) is large (Figure 
12), the peak substructure accelerations for all models were 
underestimated by the Newmark and the N&K method 
(Figure 8). These errors increase as the level of the intensity 
increases from SLE to MCE. In addition, all methods give 
reasonably accurate results in small ductility regions 
(Figure 12 SLE results) as the structure is largely in the 
elastic range. As observed for the low post-yield ratio mod-
els, Model-A exhibited the largest amplifications in both 
the horizontal and vertical directions. Kasai’s relatively rig-
orous equivalent linearisation method accurately estimates 
the substructure response (Figure 8) and therefore presents 
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(b) Model-B T1 =0.45s

-40 -20 0 20 40

Ridge coordinates (m)

0

2

4

6

8

H
or

iz
on

ta
l A

cc
el

er
at

io
n 

(m
/s

2 )

Kasai
Newmark

N&K
Mean NLRHA

-40 -20 0 20 40

Ridge coordinates (m)

0

2

4

6

8

H
or

iz
on

ta
l A

cc
el

er
at

io
n 

(m
/s

2 )

Kasai
Newmark
N&K

Direct-R
Mean NLRHA

-40 -20 0 20 40

Ridge coordinates (m)

0

2

4

6

8

H
or

iz
on

ta
l A

cc
el

er
at

io
n 

(m
/s

2 )

Kasai
Newmark

N&K
Mean NLRHA

-40 -20 0 20 40

Ridge coordinates (m)

0

2

4

6

V
er

ti
ca

l A
cc

el
er

at
io

n 
(m

/s
2 )

-40 -20 0 20 40

Ridge coordinates (m)

0

2

4

6

V
er

ti
ca

l A
cc

el
er

at
io

n 
(m

/s
2 )

-40 -20 0 20 40

Ridge coordinates (m)

0

2

4

6

V
er

ti
ca

l A
cc

el
er

at
io

n 
(m

/s
2 )

(c) Model-C T1 =0.55s
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Figure 11. Roof ridgeline accelerations (post-yield stiffness ratio p = 2% ): (a) Model-A T1 = 0.30 s, (b) Model-B T1 = 0.45 s, and  
(c) Model-C T1 = 0.55 s.
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(b) Model-B T1 =0.45s
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(c) Model-C T1 =0.55s
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Figure 12. Roof ridgeline accelerations (post-yield stiffness ratio p =10% ): (a) Model-A T1 = 0.30 s, (b) Model-B T1 = 0.45 s, and  
(c) Model-C T1 = 0.55 s.
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a conservative roof response envelope (Figure 12) for mod-
els in both the constant acceleration and velocity regions. It 
is therefore recommended to use the equivalent linearisa-
tion approach when p  is higher than 2%.

Effect of higher substructure modes

2-storey analysis models

To investigate the applicability of the approach of using 
R-factors for substructures with higher modes, the single-
storey substructure was replaced with a two-storey sub-
structure. As in the single-storey models, the first storey 
and the roof level are each 5 m high and the first storey has 
a floor weight of 7 kPa and the roof dead load is assumed 
to be 2 kPa (Table 3). The substructure model is shown in 
Figure 13 and the gravity frame section sizes are also 
adopted from the single-storey model given in Table 7. 
The BRBs for the 2-storey substructure models were 
designed using the same design procedure as for single-
storey models (using equation 17) and the properties of the 
BRBs and design storey shears are given in Table 8. The 
combined analysis models A, B and C were then con-
structed combining the roof model (Figure 5(b)) and the 
substructure models (Figure 13).

The seismic response of domes with multistorey sub-
structures may be interpreted as a combination of responses 
from both T1-roof and T2-roof interactions.16 The contri-
bution of each of these modes to the overall response is 
directly proportional to their mass participation values. 
Note that T2 includes all of the translational modes with a 
single inflection point, while T1 refers to the translational 
sway modes. However, T1 or T2 modes about all axes 
have identical periods for the dome models considered in 
this study due to symmetry.16 Unlike the single-storey 
cases, both the substructure T1 and T2 modes interact with 
the nearest roof mode. The substructure periods and roof 
periods are mapped on the design spectrum in Figure 14. 
Model-B and Model-C have fundamental periods (first 
substructure mode (T1)) in the constant velocity region, 
and Model-A with a stiffer substructure has a relatively 
shorter fundamental period in the constant acceleration 
region. The fundamental periods (T1) for all models con-
tribute to a mass participation ratio (in the direction of 
seismic input i.e. the x-direction) of about 90% and the 
remaining 10% came from the higher T2 mode which lies 
in the constant acceleration region for all models. This 
implies a higher spectral acceleration value from the T2 
modes. The substructure T2 modes are also in close prox-
imity to roof’s dominant O1 and O2 modes giving rise to 
second mode period ratios R T TT R2 2= /  in the range of 1 
(where T2  is the substructure T2 mode period and TR  is 
the roof’s O1 mode as defined previously by the authors16). 
Consequently, in these models, the vertical amplification 
factors quantifying the T2-roof interactions are larger and 

more significant than those from the T1-roof interactions 
with the longer RT1  period ratios.16

2-storey model: Inter-storey drifts

The mean peak substructure inter-storey drifts and mean 
residual inter-storey drifts obtained from NLRHA for the 
combined models are given in Figure 15. For structures 
having four stories or less, ASCE-71 prescribes an allowa-
ble storey drift of 2.5% for DBE level. The obtained mean 
storey drifts are within the permissible ASCE limits for all 
models. Typical values of mean residual drift are about 
0.3% for p = 2% models under the DBE level. These values 
increase to 0.6% under the MCE level. If 0.5% residual 
drift is assumed to be the limit beyond which the structures 
are no longer practically usable,41 then the models with 
less than or equal to 2% post-yield stiffness ratio may not 
meet this immediate occupancy performance level under 
MCE level excitation.

2-storey models: Peak substructure response

For each of the three substructure models, modal pushover 
analyses corresponding to the first and second translational 
modes were performed (Figure 16) to obtain the initial 
base shear to roof displacement stiffness (K i1 ) as shown in 
equation (18). The elastic design spectral accelerations of 
the first and second modes (Sa1 and Sa2 ) were used to 
obtain the elastic base shears (Vi ) and then extrapolate the 
maximum elastic substructure roof displacement (Di) at 
point A of Figure 13(a) from the initial stiffness (K i1 ) as 
shown in equation (18). The peak elastic RFL level accel-
eration Ai  of the substructure is also obtained from the 
corresponding roof displacement and the fundamental 
period and the response spectrum as shown in equation 
(18). The reduction factors (Rµi and Rai ) were then com-
puted for both T1 and T2 modes following equations (2)–
(4) from the target ductility µti using equations (7) and 
(19). For the equivalent linearisation approach, equations 
(8)–(16) were used. The peak inelastic base shear and roof 
acceleration of the substructure model were then obtained 
by combining the modal base shears using the SRSS modal 
combination rule using equations (31) and (32).

 sV
V

R

V

R
= ( ) ( )1

1

2 2

2

2

µ µ

+  (31)

 s eqA
A

R

A

R
= ( ) ( )1

1

2 2

2

2

µ µ

+  (32)

The peak substructure accelerations s eqA  and base 
shear ratio Cb  (= sV W/  where W  is the seismic weight) 
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Figure 13. 60 m 2-storey substructure model and modelling assumptions: (a) perspective view and (b) A-A′ elevation view.

Table 7. 2-storey substructure model data.

(a) Storey heights and seismic weights (b) Section sizes

Storey Height (m) Weight (kN) Member Section shape Section size (mm)

RFL 10 6064 Column SHS 450 ×  450 ×  25
1FL 5 6032 Beam I beam 340 ×  250 ×  9 ×  14

Table 8. 2-storey model: Equivalent lateral forces for proportioning BRBs (σ y = 235,205  MPa).

Storey h  (m) Wx  ( kN ) Vx  ( kN ) BRB Vx  ( kN ) BRB Vix  ( kN ) BRB Pi  ( kN ) δ y  (mm) BRB Keqi  (kN m/ ) Ac (mm
2)

Model-A (T s T s1 2= 0.38 , = 0.15 )

RFL 10 6064 1414 1414 40 70 1.85 37770 341
1FL 5 6032 2117 2117 60 105 1.85 56558 511

Model-B (T s T s1 2= 0.56 , = 0.23 )

RFL 10 6064 1414 1414 40 70 4.12 16997 298
1FL 5 6032 2117 2117 60 105 4.12 25451 446

Model-C (T s T s1 2= 0.69 , = 0.28 )

RFL 10 6064 1414 1414 40 70 6.17 11331 298
1FL 5 6032 2117 2117 60 105 6.17 16967 446

Ac : area of core; Keqi : BRB equivalent axial stiffness; Pi : yield axial force in each BRB; δ y : yield axial deformation; as defined in Takeuchi and Wada34.
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for all the models are compared with the mean NLRHA 
response in Figure 17. The typical DBE level base shear 
ratios are low at around 0.3 and increase to 0.35 for MCE 
level for p = 2%  models. These values further increase 
with increasing post-yield stiffness with Model-A with 
the lowest reduction and the highest base shear ratio at 
about 0.9. As observed for the single-storey models, the 
R-factor methods estimate the base shear and accelera-
tions with good accuracy for p = 2% , with Newmark’s 
method being the most conservative of all the estimation 
methods in the short-period range. As the post-yield stiff-
ness ratio increases ( p = 25% ), Kasai method is the most 
accurate if compared with the mean NLRHA response. 
For SLE level response and low-ductility regimes, all 
methods are equally accurate.

The achieved damping, reduction ratios and the peri-
ods corresponding to Kasai’s evaluation method are also 

shown in Tables 8 to 12. To compare the reduction in 
acceleration for each mode across models with different 
post-yield stiffness, the reduction in peak substructure 
acceleration R A Aai eqi i= /  obtained from the Kasai 
method is plotted for modes T1 and T2 for Model-A, 
Model-B and Model-C in Figure 18. For models with 
p = 2% , the reduction in T1 mode is the lowest for the 

SLE level with typical Ra1  values at around 0.7. These 
values reduced further to 0.2 for the DBE level and 0.1 
for MCE level. As the post-yield stiffness increases to 
p = 10% , the reduction ratio increases to 0.3 for the DBE 

level and 0.2 for the MCE level. The models with 
p = 25%  therefore exhibit the lowest reductions in 

acceleration with typical Ra1  values at around 0.8 for the 
SLE level, 0.4 for the DBE level and 0.3 for the MCE 
level. However, for the T2 mode response, the increase in 
post-yield stiffness has a relatively minor effect on the 
reduction ratios as the additional damping is lesser and 
the ductility values are smaller in the higher mode (Tables 
10 and 12). Thus, substructures designed with a high 
post-yield stiffness can achieve reduced residual inter-
storey drifts (Figure 23(b)) but the corresponding grid-
shell roofs may have to be designed for higher design 
forces due to the increased seismic input.

2-storey models: Peak roof response

The multistorey structures have been previously found 
to exhibit significantly higher amplification, especially 
in the vertical direction for RT1 > 2 16 which may be 
attributed to the substructure T2 mode and its interaction 
with the roof’s predominant modes in its close proxim-
ity. To account for these higher-mode effects, the T2-roof 
horizontal and vertical amplification factors were pro-
posed16 as a function of the period ratio RT 2  as defined 
in equations (33) and (34). After obtaining the peak sub-
structure response, the peak roof accelerations for the 
combined models were calculated for each of the modes 
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Figure 17. 2-storey models: Base shear ratios and peak substructure (RFL) acceleration.

Table 9. p = 2%  2-storey models: peak substructure first-mode (T1) parameters.

heq1 Keq1 / K1 Dh Rd Ra µt1
T1 Teq1 TR

Model-A-SLE 0.10 0.62 0.79 1.14 0.71 1.63 0.38 0.48 0.23
Model-A-DBE 0.43 0.11 0.44 1.74 0.20 8.14 0.38 1.12 0.23
Model-A-MCE 0.47 0.07 0.42 2.15 0.15 12.21 0.38 1.41 0.23

Model-B-SLE 0.09 0.65 0.82 1.01 0.66 1.53 0.56 0.69 0.23
Model-B-DBE 0.42 0.12 0.44 1.25 0.16 7.66 0.56 1.59 0.23
Model-B-MCE 0.46 0.08 0.43 1.52 0.12 11.48 0.56 2.00 0.23

Model-C-SLE 0.07 0.78 0.92 1.04 0.81 1.24 0.69 0.77 0.23
Model-C-DBE 0.38 0.16 0.46 1.14 0.19 6.18 0.69 1.70 0.23
Model-C-MCE 0.44 0.10 0.43 1.36 0.14 9.27 0.69 2.15 0.23



20 International Journal of Space Structures 00(0)

Table 12. p = 25%  2-storey models: peak substructure second-mode (T2) parameters.

heq2 Keq2 / K2 Dh Rd Ra µt2
T2 Teq2 TR

Model-A-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.15 0.15 0.23
Model-A-DBE 0.07 0.79 0.91 1.09 0.86 1.37 0.15 0.17 0.23
Model-A-MCE 0.12 0.60 0.76 1.11 0.67 2.06 0.15 0.20 0.23

Model-B-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.23 0.23 0.23
Model-B-DBE 0.07 0.79 0.90 1.08 0.85 1.40 0.23 0.26 0.23
Model-B-MCE 0.13 0.61 0.74 1.08 0.66 2.10 0.23 0.29 0.23

Model-C-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.28 0.28 0.23
Model-C-DBE 0.07 0.76 0.90 1.11 0.84 1.42 0.28 0.32 0.23
Model-C-MCE 0.12 0.56 0.75 1.16 0.65 2.13 0.28 0.37 0.23

Table 10. p = 2%  2-storey models: peak substructure second-mode (T2) parameters.

heq2 Keq2 / K2 Dh Rd Ra µt2
T2 Teq2 TR

Model-A-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.15 0.15 0.23
Model-A-DBE 0.08 0.73 0.88 1.12 0.82 1.37 0.15 0.18 0.23
Model-A-MCE 0.15 0.49 0.69 1.19 0.58 2.06 0.15 0.22 0.23

Model-B-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.23 0.23 0.23
Model-B-DBE 0.08 0.72 0.87 1.12 0.81 1.40 0.23 0.27 0.23
Model-B-MCE 0.16 0.49 0.68 1.18 0.57 2.10 0.23 0.33 0.23

Model-C-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.28 0.28 0.23
Model-C-DBE 0.08 0.71 0.86 1.13 0.80 1.42 0.28 0.33 0.23
Model-C-MCE 0.16 0.47 0.67 1.20 0.57 2.13 0.28 0.41 0.23

Table 11. p = 25%  2-storey models: peak substructure first-mode (T1) parameters.

heq1 Keq1 / K1 Dh Rd Ra µt1
T1 Teq1 TR

Model-A-SLE 0.09 0.71 0.84 1.09 0.78 1.63 0.38 0.45 0.23
Model-A-DBE 0.21 0.34 0.60 1.33 0.45 8.14 0.38 0.65 0.23
Model-A-MCE 0.19 0.31 0.62 1.45 0.44 12.20 0.38 0.68 0.23

Model-B-SLE 0.08 0.74 0.86 1.01 0.74 1.53 0.56 0.65 0.23
Model-B-DBE 0.21 0.35 0.61 1.03 0.36 7.65 0.56 0.95 0.23
Model-B-MCE 0.20 0.31 0.62 1.11 0.34 11.48 0.56 1.01 0.23

Model-C-SLE 0.06 0.84 0.94 1.03 0.86 1.24 0.69 0.75 0.23
Model-C-DBE 0.20 0.37 0.61 0.99 0.37 6.18 0.69 1.12 0.23
Model-C-MCE 0.20 0.33 0.61 1.06 0.35 9.27 0.69 1.20 0.23

from the inelastic response s HeqiA  and the corresponding 
first and second mode amplification factors in equations 
(23)–(28). For the equivalent linearisation approach, the 
substructure’s peak modal response s HeqiA  was com-
puted considering the effect of both the period shift and 
the damping.13 For the R-factor approach methods, the 
peak inelastic substructure acceleration for each mode 
was obtained using equation (7). For comparison,  
the DBE level response was also computed using the 

Direct-R method and a reduction factor R = 8  for both 
the modes.

The modal accelerations at each node were then com-
bined using equations (35) and (36) to obtain the combined 
response envelope. This study uses an absolute summation 
rule.13,16 The equivalent static seismic forces for each node 
may then be computed from the nodal mass mk  and accel-
eration c HA x y( , )  or c VA x y( , )  at position ( , )x y  using 
equation (37).
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Figure 18. Kasai method: reduction in 2-storey substructure modal acceleration.
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The proposed ridgeline A-O-A′ (Figure 5) accelera-
tions are compared with the mean NLRHA results in 
Figures 19 to 21. For comparison, results accounting only 
for the substructure T1 mode ( s HeqA 1 ) with the corre-
sponding roof amplification factors ( FH1  and FV1 ) are 
also shown and labelled ‘T1’ and for the substructure T2 
mode ( s HeqA 2 ) response obtained with the corresponding 
roof amplification factors ( FH 2  and FV 2 ) are also shown 
and labelled ‘T2’.

The ductility ratios from the first mode T1 are large 
resulting in longer secant periods (Tables 9 and 11) and 
thereby smaller substructure accelerations from the first 
mode as depicted by the dotted T1 lines in Figures 19 to 
21. The second mode accelerations achieve smaller ductil-
ity ratios (Tables 10 and 12) resulting in near-elastic peak 
substructure ( s HeqA 2 ) response. Furthermore, the T2 mode 
exhibits shorter period ratios ( RT 2 ) leading to larger verti-
cal roof amplification factors and therefore, the higher 
mode contribution towards the overall vertical roof 
response is much larger than the first mode, even though 
the mass participation of the higher mode is small. 
Nevertheless, for p = 10% , both N&K and Newmark 
methods present near identical responses for Model-B and 

Model-C (with T1 modes in the constant velocity region) 
and conservatively capture the mean DBE level NLRHA 
vertical response but underestimate the horizontal response 
(Figure 20(b) and (c)). For Model-A (with T1 mode in the 
constant acceleration region), the Newmark method pre-
sents the most conservative horizontal and vertical 
response among the proposed R-factor approaches. For 
DBE level response results using direct-R factor method, 
the accuracy is relatively low as it assumes much larger 
force reduction factors in both the modes and may not be 
realistic for multistorey structures with significant second 
mode contributions. For structures with higher post-yield 
stiffness like the p = 25%  models, the peak substructure 
response is underestimated by the R-factor methods lead-
ing to unconservative overall peak roof responses (Figure 
21) in all models. These errors increase as the level of the 
intensity increases from SLE to MCE with increasing duc-
tility values. The more accurate Kasai method is therefore 
recommended for estimating responses of structures with 
higher post-yield stiffness ratios.

6-Storey analysis models

To further investigate the effects of substructure higher-
modes, a 6-storey substructure with a height of 30m was also 
constructed as shown in the Figure 22. Commensurate with 
the geometry of the previous substructure models, the storey 
height for the 6-storey substructure is kept constant at 5 m, 
each storey has a floor weight of 7 kPa and the roof dead load 
is assumed to be 2 kPa (Table 3). The gravity frame section 
sizes are also adopted from the 2-storey model given in Table 
7. The BRBs were designed using the same design procedure 
(as discussed for 2-storey models using equation 17 and 
R=8) and a standard post-yield stiffness ratio p  = 2%, and 
the properties of the BRB links and design storey shears are 
given in Table 13. The combined analysis model (Model-B) 
was then constructed combining the roof model (Figure 5(b)) 
and the substructure model. To investigate the effect of post-
yield stiffness, an additional substructure model with links 
modelled with a post-yield stiffness p  = 25% was created 
keeping the yield displacements the same. For brevity, only 
the Model-B is discussed in this paper for 6-storey models.
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(a) Model-A ( T1 =0.38s, T2 =0.15s)
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(b) Model-B ( T1 =0.56s, T2 =0.23s)
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(c) Model-C ( T1 =0.69s, T2 =0.28s)
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Figure 19. p = 2%  2-storey models: ridgeline accelerations: (a) Model-A (T1 = 0.38 s, T2 = 0.15 s), (b) Model-B (T1 = 0.56s, T2 = 0.23 s), 
and (c) Model-C (T1 = 0.69s, T2 = 0.28 s).
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(a) Model-A ( T1 =0.38s, T2 =0.15s)
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(b) Model-B ( T1 =0.56s, T2 =0.23s)
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(c) Model-C ( T1 =0.69s, T2 =0.28s)
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Figure 20. p = 10% 2-storey models: ridgeline accelerations: (a) Model-A (T1 = 0.38 s, T2 = 0.15 s), (b) Model-B (T1 = 0.56 s, 
T2 = 0.23 s), and (c) Model-C (T1 = 0.69 s, T2 = 0.28 s).
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(a) Model-A ( T1 =0.38s, T2 =0.15s)
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(b) Model-B ( T1 =0.56s, T2 =0.23s)
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(c) Model-C ( T1 =0.69s, T2 =0.28s)
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Figure 21. p = 25% 2-storey models: ridgeline accelerations: (a) Model-A (T1 = 0.38 s, T2 = 0.15 s), (b) Model-B (T1 = 0.56 s, 
T2 = 0.23 s), and (c) Model-C (T1 = 0.69 s, T2 = 0.28 s).
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Figure 22. 6-storey Model-B (combined model): perspective and elevation view.

Table 13. 6-storey model: Equivalent lateral forces for proportioning BRBs (σ y = 235  MPa).

Storey h  (m) Wx
 (kN ) Vx  (kN ) BRB Vx  (kN ) BRB Vix  (kN ) BRB Pi  ( kN ) δ y  (mm ) BRBKeqi

 (kN m/ ) Ac (mm2)

Model-B ( T s T s1 2= 0.93 , = 0.39 )

RFL 30 6064 1483 1483 43 75 4.12 18,343 321
6FL 25 6032 2713 2713 77 138 4.12 33,550 588
5FL 20 6032 3696 3696 106 188 4.12 45,715 801
4FL 15 10968 5038 5038 144 256 4.12 62,305 1091
3FL 10 10968 5932 5932 169 302 4.12 73,364 1285
2FL 5 10968 6379 6379 182 325 4.12 78,894 1382
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6-storey models: Inter-storey drifts

The mean peak inter-storey drifts and mean residual 
inter-storey drifts for the substructure of the combined 
models (Model-B) are given in Figure 23. ASCE-71 pre-
scribes an allowable storey drift of 2.0% for DBE level. 
The obtained mean storey drifts are quite uniform along 
the substructure height and are within the permissible 
ASCE limits for all the models with post-yield stiffness. 
Typical values of mean residual drift are about 0.3% for 
p=2% models under the DBE level. These values increase 
to 0.4% under the MCE level and are within the 0.5% 
limit for immediate occupancy criteria for most stories 
except the roof floor. While increasing the post-yield 
stiffness to p=25% reduces the peak inter-storey drifts, 
the improvement in residual drifts is much more signifi-
cant with typical residual drifts for all the three levels 
within 0.2%.

6-storey models: Peak substructure acceleration

The first substructure mode T1 (fundamental translational 
mode) has a period of 0.93 s and a mass participation (Γ1 ) 
of 77% and the second translational mode T2 has a period 
of 0.39 s and contributes to a mass participation (Γ2 ) of 
15%. The periods are longer than those of the 2-storey 
models resulting in longer period ratios. These longer 
period ratios imply that the roof-substructure interaction is 
weaker and corresponds to smaller vertical amplification 
factors which have an inverse relationship with the period 
ratios in this range. The mass participation of second mode 
is larger if compared to the 2-storey substructure models, 
leading to higher contribution of the T2 mode to the peak 
substructure response.

For each of the models, modal pushover analyses was 
conducted to obtain the first and second modal pushover 
curves and initial base shear to roof displacement stiffness 
(K i1 ) was obtained as shown in Figure 24. For p = 2%  
model, the first mode pushover curve has a post-yield 
stiffness of 2% and the second mode pushover curve was 
found to have a higher post-yield stiffness of 14% as the 
BRBs of all the storeys do not yield at the same time and 
many of the braces remain elastic when the substructure is 
pushed using a force distribution based on the second 
mode shape. Similarly, for the p = 25%  model, the first 
mode pushover curve has a post-yield stiffness of 25% 
and the second mode pushover curve was found to have a 
post-yield stiffness ratio of 36%.

As for the 2-storey and single-storey models, the peak 
response of each model was computed for three levels of 
earthquake intensity – SLE, DBE and MCE. The reduc-
tion in acceleration ( Rai ) and achieved damping param-
eters for each substructure mode from the Kasai method 
are given in Tables 14 to 17. For the DBE level, as both 
the seismic demand and reduction factors are large, the 
roof displacement ductility factors obtained from the 
first mode µ1 were about 6. The second mode had a sig-
nificant contribution to damping as well as can be seen 
from the higher heq2  values and lower Dh2  values in Tables 
15 and 17 if compared to the 2-storey models in Tables 10 
and 12. The shift in periods and reduction in acceleration 
was thus larger than those observed for the second mode in 
2-storey models.

6-storey models: Peak roof response

After obtaining the peak substructure response, the peak 
roof accelerations for the combined models were calcu-
lated for each of the modes from the inelastic response 
s HeqiA  and the corresponding first and second mode 
amplification factors in equations (23)–(28). The peak 
roof accelerations for the combined models listed in 
Tables 14 to 17 were calculated using the first and second 
mode amplification factors in equations (23)–(28). The 
proposed envelope of ridgeline A-O-A′ (Figure 22) accel-
erations are compared with the mean NLRHA results in 
Figures 25 and 26. The second mode achieves smaller 
ductility ratios (Tables 15 and 17) and the reduction in 
acceleration is lesser if compared to the T1 mode 
response. Therefore, in large ductility regimes for the 
DBE and MCE levels, s HeqA 2  (T2 dashed lines) is higher 
than s HeqA 1  (T1 dotted lines). Furthermore, the T2 mode 
exhibits relatively shorter period ratios (R RT T2 1< ) lead-
ing to larger vertical roof amplification factors (F FV V2 1> ) 
and therefore, the higher mode contribution towards the 
overall vertical roof response is much larger than the first 
mode, even though the mass participation of the higher 
mode is small. For p = 2%  DBE level response results 
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Figure 23. 6-storey Model-B: Mean of peak storey drift ratios 
of substructure: (a) storey drift ratio and (b) Residual drift ratio.
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Figure 24. 6-storey Model-B: modal pushover curves and idealisation of structural response: (a) first mode (T1) and (b) second 
mode (T2).

Table 17. 6-storey p = 25%  models: peak substructure second-mode (T2) parameters.

heq2 Keq2 / K2 Dh Rd Ra µt2
T2 Teq2 TR

Model-B-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.39 0.39 0.23
Model-B-DBE 0.19 0.51 0.63 1.05 0.54 4.13 0.39 0.55 0.23
Model-B-MCE 0.20 0.46 0.61 1.08 0.50 6.20 0.39 0.58 0.23

Table 14. 6-storey p = 2%  models: peak substructure first-mode (T1) parameters.

heq1 Keq1 / K1 Dh Rd Ra µt1
T1 Teq1 TR

Model-B-SLE 0.06 0.87 0.97 1.04 0.91 1.11 0.94 1.00 0.23
Model-B-DBE 0.37 0.18 0.47 1.10 0.20 5.53 0.94 2.19 0.23
Model-B-MCE 0.43 0.11 0.44 1.30 0.15 8.30 0.94 2.78 0.23

Table 15. 6-storey p = 2%  models: peak substructure second-mode (T2) parameters.

heq2 Keq2 / K2 Dh Rd Ra µt2
T2 Teq2 TR

Model-B-SLE 0.05 1.00 1.00 1.00 1.00 1.00 0.39 0.39 0.23
Model-B-DBE 0.23 0.43 0.58 1.08 0.46 2.96 0.39 0.60 0.23
Model-B-MCE 0.31 0.33 0.51 1.10 0.36 4.44 0.39 0.69 0.23

Table 16. 6-storey p = 25%  models: peak substructure first-mode (T1) parameters.

heq1 Keq1 / K1 Dh Rd Ra µt1
T1 Teq1 TR

Model-B-SLE 0.05 0.91 0.98 1.03 0.94 1.11 0.94 0.98 0.23
Model-B-DBE 0.20 0.39 0.61 0.98 0.38 5.53 0.94 1.49 0.23
Model-B-MCE 0.20 0.34 0.61 1.04 0.35 8.29 0.94 1.60 0.23
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Figure 25. 6-storey (Model-B: T1  = 0.94 s, T2  = 0.39 s) p = 2% : ridgeline accelerations.
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Figure 26. 6-storey (Model-B: T1 =0.94s, T2 =0.39s), p = 25% : ridgeline accelerations.

using direct-R factor method, the accuracy is relatively 
low as it assumes much larger force reduction factors 
than actually achieved in both the modes (severely under-
estimating the second mode response) and may not be 
realistic for multistorey structures with significant sec-
ond mode contributions. However, the response from 
Newmark’s method (T1 + T2 response) is nearly equal to 
the Kasai method (T1 + T2 response) in Figure 25, 

conservatively capturing the mean NLRHA response. For 
the Newmark method, the s HeqA 1  was computed follow-
ing the equal displacement rule and s HeqA 2 using the 
equal energy rule as the two substructure modes lie on 
different regions of the spectrum. This confirms the 
applicability of Newmark method for multistorey sub-
structures with elastoplastic first mode response and con-
siderable post-yield stiffness in the second mode.
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As observed in the previous 2-storey models (Figures 
17 and 18), for structures with higher post-yield stiffness 
like the p = 25%  models, the peak substructure response 
is underestimated by the R-factor methods leading to 
unconservative overall peak roof responses (Figure 26). 
These errors increase as the level of the intensity increases 
from SLE to MCE with increasing ductility values. 
Nevertheless, the Newmark method provided a conserva-
tive estimate of the vertical response even for p = 25% 
models as the proposed vertical amplification factors are 
conservative enough to compensate for the underestima-
tion of the substructure response. To summarise, the most 
conservative Kasai method is recommended for estimat-
ing responses of structures with higher post-yield stiff-
ness ratios.

Equivalent static loads

The proposed peak roof accelerations were then used to 
compute the corresponding equivalent static loads using 
equation (37). Static analyses were performed by applying 
the obtained vertical and horizontal loads simultaneously 
to the roof nodes in each of the patterns (corresponding to 
the roof’s dominant anti-symmetric mode shape O1 
expressed by equations (27) and (28)) as shown in Figure 
27.13 The maximum response (axial force and bending 
moment) in each member from the four static load cases 
may be considered as the preliminary seismic demand.

The detailed results for the 2-storey p = 2%  and p = 25% 
models are compared with the mean NLRHA response in 
Figures 28 and 29. The proposed fit lines are also shown 
using dashed lines. The axial forces from the R-factor 
approaches are close to the NLRHA response except for the 

direct-R method. Furthermore, the R-factor methods’ and 
the Kasai method’s member responses are nearly equal for 
models with p = 2% . For p < 10%, all the estimation meth-
ods present near identical responses for Model-B and 
Model-C (with T1 modes in the constant velocity region) 
accurately capturing the mean NLRHA response. For 
Model-A (with T1 mode in the constant acceleration region), 
the Newmark method followed by the Kasai method present 
the most conservative response among the investigated esti-
mation methods. The errors in the R-factor methods are 
more evident in the models with higher post-yield stiffness 
(Figure 29) where the Kasai method (shown in black mark-
ers) exhibits much more conservative DBE and MCE level 
axial forces and bending moments when compared to the 
NLRHA method. As discussed in the previous sections of 
peak roof responses, this is due to the underlying assump-
tions of R-factor approaches which were proposed consider-
ing idealised elastoplastic (or low post-yield stiffness) 
backbone behaviour and thus are recommended for models 
with relatively low post-yield stiffness.

The member responses of the 6-storey models are also 
compared in detail in Figures 30 and 31. While the second 
mode possesses higher post-yield stiffness in the 6-storey 
cases, similar to the 2-storey models’ responses, the accu-
racy of the Newmark method and the Kasai method 
remained nearly equal for models with p = 2%. As 
observed for the peak ridge accelerations, the differences 
in proposed member forces are more evident in the models 
with higher post-yield stiffness where the Kasai method 
exhibits a more conservative response with the errors in 
the R-factor method estimates larger in the higher ductility 
ranges (the DBE and MCE level). As the equivalent static 
load results from the proposed RSA and amplification fac-
tor approach provide an enveloped response, the obtained 
axial forces and bending moments do not necessarily cor-
respond to the critical combination of the forces and 
moments obtained from the response-history analyses.5,7 
Therefore, it is recommended to use the proposed equiva-
lent static load procedure in the preliminary design stages 
as a baseline method for initial sizing and approximate 
estimation of the member forces. For the final design 
member check, it is recommended to use the more rigor-
ous NLRHA method.

Conclusions

This paper investigated the applicability of the ductility-
based reduction factors to estimate the peak substructure 
response (R-factor approaches) using RSA which forms 
the basis for the equivalent static forces of the dome. The 
response of simpler single-storey substructures and the 
higher mode effects of multistorey substructures were 
studied and the results from the proposed estimation 
methods were verified using nonlinear response history 
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Figure 28. 2-storey p = 2%  models: Comparison of member axial forces and bending moments: (a) axial forces (kN) and (b) 
bending moments (kN m).
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Figure 29. 2-storey p = 25%  models: comparison of member axial forces and bending moments: (a) axial forces (kN) and (b) 
bending moments (kN m).
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Figure 30. 6-storey p = 2%  models: Comparison of member axial forces and bending moments: (a) axial forces (kN) and (b) 
bending moments (kN m).
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Figure 31. 6-storey p = 25%  models: Comparison of member axial forces and bending moments: (a) axial forces (kN) and (b) 
bending moments (kN m).

analyses (NLRHA). The following conclusions were 
drawn from this investigation:

1. The RSA based amplification factor approach pro-
posed for elastic structures was extended for 

practical yielding BRBF substructures designed 
using an R-factor of 8 and varying the post-yield 
stiffness. It was observed that the peak inelastic 
roof response was highly influenced by the post-
yield stiffness ( p) of the substructure, and so 
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adopting the same R-factor (=8) for obtaining the 
inelastic force demands (as in the ‘direct-R’ 
method) severely underestimated the peak roof 
responses for models with p > 2%.

2. Kasai’s equivalent linearisation method estimated 
the substructure response with accuracies very 
similar to the NLRHA for all the studied models. 
This method used in combination with the pro-
posed amplification factor approach is an efficient 
alternative to the NLRHA method to estimate a 
conservative envelope of the peak accelerations 
and the equivalent static loads for the preliminary 
design of the dome.

3. For single-storey and first-mode dominated struc-
tures, both the R-factor methods – ‘Newmark’ and 
‘Nassar & Krawlinkler’ apply simple ductility reduc-
tion factor formulations to estimate the peak sub-
structure responses and the accuracies are comparable 
to those from the NLRHA for structures with low 
post-yield stiffness ratios (p <= 2%). The Newmark 
method formulated based on the equal energy rule 
was found to have the best accuracy among the 
R-factor approaches for short-period structures with 
fundamental periods in the constant acceleration 
region of the design acceleration spectrum.

4. The accuracies of the R-factor methods in estimat-
ing the peak substructure response was low for sin-
gle and 2-storey structures with high post-yield 
stiffness ratios (p = 25%) due to the underlying 
assumptions behind the formulations. Therefore, 
for structures with high post-yield stiffness ratios 
(p >= 2%) typically found in countries like Japan 
with moment connections, it is recommended to 
adopt the more accurate Kasai method in combina-
tion with the amplification factors to obtain the 
peak envelope roof response. These may then be 
used to obtain the equivalent static loads on the 
roof for preliminary member sizing.

5. While multistorey structures exhibit significant 
higher mode response, for substructures with low 
(first-mode) post-yield stiffness ratios, Newmark’s 
method in combination with the first and second 
mode amplification factors provides a conservative 
roof response with accuracies nearly equal to those 
of the iterative Kasai method. Therefore, for all 
structures with low post-yield stiffness ratios (
p < 10%), it is recommended to adopt the simpler 
Newmark method in combination with the amplifi-
cation factors to obtain the envelope of the peak 
roof response.
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