地震動入力レベルを考慮したダンパー付単層アウトリガー構造の非線形動的応答特性 NON-LINEAR DYNAMIC RESPONSE CHARACTERISTIC OF SINGLE-DAMPED OUTRIGGER SYSTEMS WITH OIL DAMPERS OR ELASTO-PLASTIC DAMPERS CONSIDERING DESIGN EARTHQUAKE LEVELS

寺澤友貴^{*1},石橋洋二^{*2},大村広輝^{*3},浅井智樹^{*4},竹内 徹^{*5} Yuki TERAZAWA, Yoji ISHIBASHI, Hiroki OMURA, Tomoki ASAI and Toru TAKEUCHI

The damped outrigger system is in widespread in seismic area as a damping modification system. However, the relationships between the exact damping performance and its seismic response reduction effect has not been deeply investigated yet. This paper investigated the non-linear dynamic response characteristic of single-damped outrigger systems with oil dampers or elasto-plastic dampers considering design earthquake levels. The optimal damper design equations to maximize 1st mode damping ratio were proposed, and validated through the application example of a Japanese super-tall building, and a design algorithm to translate the optimized single damped outrigger to quad damped outrigger systems is proposed.

Keywords: Damped Outrigger System, Oil Damper, Elasto-plastic Damper, Complex Eigenvalue Analysis, Optimal Design, Mode Control ダンパー付アウトリガー構造,オイルダンパー,弾塑性ダンパー,複素固有値解析,最適設計,モード制御

1. 序

アウトリガー構造^{1), 2)}とは,剛強な中央コアと建物外周柱(側柱) がアウトリガーを介して連結される超高層建築の構造形式である。 アウトリガー構造では,側柱に拘束されたアウトリガーが架構全体 の曲げ応答に抵抗し,コア部が曲げ戻され,層間変形角が低減され る。特に近年では,SmithとWillford³⁾が,曲げ応答抵抗時の側柱と アウトリガーの鉛直変位差をダンパーの地震エネルギー吸収に利用 するダンパー付アウトリガー構造を提案し,簡単に高い付加減衰効 果を獲得できる点が評価され海外の風・地震地域で主流となってい る⁴⁾。日本でも400m級超高層建物(Supertall building⁴⁾)の建設機運が 高まり,有効な地震応答制御手法として同構造が注目されている⁵⁾。

ダンパー付アウトリガー構造に関する研究は、(a)分布定数系の振動理論モデルの構築と手計算可能な地震応答評価法の構築⁶⁾⁻¹⁰,(b) 広範な時刻歴応答解析結果に基づく設計指針の提言¹¹⁾⁻¹³,(c)個別の 建物に関する耐震性能の検証¹⁴⁾,(d)小模型の振動台実験と数値解 析^{15),16}に大別され,海外を中心に精力的に行われている。日本では, 五十殿らが類似する曲げ変形制御型制震構造^{17),18}を提案しており, 国内での実適用例も少なくない。ただし,同構造はSmithとWillford の提案³より早く先駆的であるが,ハットトラスを前提とする点や 剛接柱梁立体骨組の応答制御を前提とする点が,現在国際的に認知 されているダンパー付アウトリガー構造の仕様³とは異なる。

その一方, Smith と Willford³⁾は、ダンパー付アウトリガー構造の 計画時にダンパーの付加減衰を考慮した固有振動等特性の検証を推 奨しているが,非比例減衰系の固有振動特性と地震応答の関係に着 目した最適設計法の検討は未だ少ない⁹。この点について筆者ら²⁰⁾ は、第一著者の提案する一般化応答スペクトル解析法²¹⁾を用いてダ ンパー付単層アウトリガー構造の動的応答特性(非比例減衰系の固 有周期と減衰比、地震応答)を詳細に分析し、1次モード減衰比を最 大化する設計が各地震応答を包括的に抑制する点を明らかにし、ア ウトリガー高さ比とコア部に対するダンパー接合要素の剛性比を制 約条件とする最適ダンパー剛性比の簡易推定式を提案した。しかし、 前報²⁰⁾では、理想的な線形粘性ダンパーのみ対象とされ、地震動入 カレベルに依存して非線形性を発揮するダンパー付アウトリガー構 造の動的応答特性や1次モード減衰比を最大化する設計の有効性は 未だ不明である。特にダンパー種類、地震動入力レベルに基づき同 構造の動特性を比較分析した例は殆ど無く、その統計資料の整備も 同構造の導入を検討する実務者にとって有益と考えられる。

本研究では、一般化応答スペクトル解析法を用いて、地震動入力 レベルを考慮したダンパー付単層アウトリガー構造の最大応答時に 対応する非線形動的応答特性をモード毎に詳細に分析し、1 次モー ド減衰比を最大化する構造計画の有効性を検証する。本研究は、非 線形ダンパーは相対速度の1乗に比例するオイルダンパーと座屈拘 東ブレース(BRB)などの弾塑性ダンパーを対象とする。まず2章で は数値解析概要を述べる。次の3章では非線形の固有振動特性と地 震応答低減効果の関係性を分析する。続く4章では入力地震動レベ ルを考慮した最適ダンパー剛性比の簡易推定式を提案する。最後 の5章では日本特有の平面計画を模擬した400m級超高層建物を対 象に、非線形ダンパー付アウトリガー構造の最適設計を試みる。

^{*1} 東京工業大学建築学系 助教・博士 (工学)

^{*2} 三菱地所設計 修士 (工学)

^{*3} 東京工業大学建築学系 大学院生

^{*4} 元 東京工業大学大学院生 修士 (工学)

^{*5} 東京工業大学建築学系 教授・博士 (工学)

Assist. Prof., Dept. of Arch. and Build. Eng., Tokyo Institute of Technology, Dr.Eng. Mitsubishi Jisho Sekkei Inc., M.Eng.

Grad. Student, Dept. of Arch. and Build. Eng., Tokyo Institute of Technology Former Grad. Student, Tokyo Institute of Technology, M.Eng.

Prof., Dept. of Arch. and Build. Eng., Tokyo Institute of Technology, Dr.Eng.

2. 数值解析概要

2.1 想定建物と数値解析モデル

Fig. 1 に想定建物と数値解析モデルの概要を示す。同図(a)(b)に示 すように,想定建物は水平荷重に抵抗する中央コア,鉛直荷重を支 持するピン接合柱梁骨組,アウトリガートラスとダンパーで構成さ れる海外で典型的なダンパー付単層アウトリガー構造とする。ダン パーは相対速度の一乗の減衰力を発揮する線形オイルダンパー(線 形粘性ダンパー),同相対速度がリリーフ速度に達すると粘性係数が Bilinear 型で低減される非線形オイルダンパーおよび座屈拘束ブレ ース(BRB)に代表される弾塑性ダンパーの3種類を対象とする。

Fig. 1(b)(c)に示すように、本研究はこの想定建物の長手方向一構 面を抽出し、側柱をトラス要素、コア部とアウトリガートラスを梁 要素,線形または非線形のオイルダンパーを Fig. 2(a)の荷重-速度関 係を有するダッシュポット要素,弾塑性ダンパーを Fig. 2(b)の荷重-変形関係を有するリンク要素に置換・集約した数値解析モデル(DM モデル)を作成する。ダンパー以外の部材要素は弾性とする。Fig.1(c) に示すように、DM モデルでは、コア部とアウトリガーは 1m 間隔 の節点を設けて高次モード変形を模擬するが、側柱は1部材1要素 とする。側柱頂部はアウトリガー先端との鉛直相対変位に対しダン パーの要素を設ける。固定荷重は 0.8 ton/m² として長手方向一構面 の負担床重量をコア部に集中質量で与える。DM モデルは構造計画 の初期に用いるモデルであり, 簡略化のためコア部や側柱は一様断 面とする¹¹⁾。本論はアウトリガーを考慮しないモデルはコアモデル (Free Core), アウトリガートラスと側柱が直結する従来型アウトリ ガー構造は固定モデル(Fixed)、ダンパー付アウトリガー構造はダン パー種類に応じて LO モデル(線形オイルダンパー), NLO モデル(非 線形オイルダンパー), BRB モデル(弾塑性ダンパー)と呼称する。

2.2 設計変数の定義と検討範囲

Table 1 に設計変数の定義一覧を示す。アウトリガー構造を代表す る諸元は、軒高 h、アウトリガースパン l, 軒高に対するアウトリガ ー高さ比 a、コア部の曲げ剛性 EI、アウトリガーの鉛直方向剛性 k, アウトリガー高さ ah までの側柱軸剛性 k,d a(ただし、k, は軒高の側 柱軸剛性)、オイルダンパーの初期粘性係数 Cd とリリーフ荷重 F, BRB の初期軸剛性 kd と降伏荷重 Fyである。日本で一般的な重層建 物の制振構造設計法²¹と比較して、アウトリガー構造では、コア部 が「主架構」、側柱+アウトリガーがダンパーの「接合部」、ダンパー +側柱+アウトリガーが主架構への「付加系」に対応する。このダン パー接合部剛性 kb は、アウトリガー剛性 kt を鉛直方向変形によるダ ンパー軸方向の剛性と見做し、側柱軸剛性 kda との直列バネ剛性と して計算する。さらに分析の指標としてダンパーの損失剛性 Cdmと接 合部剛性 kb の比で表す。mはコアモデルの1次固有円振動数とする。

Table 2 にダンパー以外の建物諸元の検討範囲を示す。3~5 章では, 基準階高 4m の 16 層, 32 層, 64 層の単層アウトリガー構造を対象 とする。コア部の曲げ剛性 EI はコアモデルの 1 次固有周期が 0.03*h* に一致する値とする。アウトリガースパン *l*, は海外の事例 4, 11)を参 考に 12m または 16m とする。過大な範囲も検討していた既往研究 11) やそれを踏襲した前報 20)と異なり,本研究では Fig. 1(d)(e)に示す具 体的なアウトリガートラスを設計し,アウトリガー曲げ剛性 *k*, はコ

ア部側を固定支持とした静的応力解析から現実的な約 0.5×10⁶ kN/m (せん断変形と曲げ変形を含む等価曲げ剛性)を同定し、その半分 (0.25×10⁶ kN/m)と2倍(1.0×10⁶ kN/m)の3種類を検討範囲とする。実 際の側柱断面が長期荷重で決定される点を考慮し、側柱軸剛性k。は CFT 鋼管部で許容応力度設計の検定比 0.5 以下となる 600×25mm (16 層), 800×36mm (32層), 1000×50mm (64層)の角形鋼管断面に対応す る値で固定する。

Table 3 と Table 4 にダンパーの検討範囲を示す。標準製品の平均 として, 非線形オイルダンパーのリリーフ速度 v,は 30mm/s, 2 次粘 性係数比 pd は 0.012 とする。BRB は芯材を LY225, 全長を 5m と 8m と想定し(Fig.1(d)), LY225の降伏歪約 0.1%より降伏軸変形 uvは 5mm と8mmとする。対応するBRB弾性部と塑性化部の断面積比は0.50, 全長に対する塑性化部の長さ比は 0.82 であり,3 章以降の芯材塑性 歪 ɛ,は同諸元と塑性率から換算する。オイルダンパーのリリーフ荷 重や BRB の降伏荷重は,固有周期や減衰比,地震応答の極値を捉え られる範囲とする。オイルダンパーは $k_d = \omega(F_r/v_r) = 0.03 - 0.11F_r$, BRB は $k_d = F_y / u_y = 0.125 \sim 0.20F_y$ であり、同じ接合部剛性 $k_b とダン$ パー耐力 Fのモデルでも、ダンパー-接合部剛性比 R_{db}は BRB がオ イルダンパーより 1.83 倍(16 層), 4 倍(32 層), 4.2 倍(64 層)大きい。

本研究はアウトリガー高さ比 a, アウトリガー曲げ剛性 k, オイ ルダンパーの初期粘性係数 Cd, BRB の初期軸剛性 kd を主要操作設 計変数として以上の検討範囲内で広範な数値解析検討を行い、異な るダンパー種や地震動入力レベルが、同一の建物諸元を有する単層 アウトリガー構造の動的応答特性に与える影響を比較分析する。

2.3 数值解析手法

数値解析手法は一般化応答スペクトル解析(GRSA)²¹⁾と時刻歴応 答解析(NLRHA)を用いる。比例減衰行列は初期の剛性行列と質量行 列に基づく Rayleigh 型とし、1次と2次の減衰比は2%とする。

GRSA は複素固有値解析と応答スペクトル法の収斂計算を中核と する数値解析群であり,最大応答時に対応する振動系の非線形動的 応答特性を評価する。最大応答値は非比例減衰系用の修正 CQC 法²⁵⁾ より式(1)で算出し、非線形ダンパーはこの最大応答評価値に基づき 振幅依存型の弾塑性減衰を模擬する複素剛性要素や速度依存型の粘 性減衰を模擬する線形粘性要素に繰返し等価線形置換され、剛性と 減衰の全体行列に含まれて複素固有値解析に反映される。BRB の非 線形性を模擬する複素剛性は等価剛性係数 a とエネルギー吸収係数 bと平均減衰法²³⁾より式(2)で評価する。オイルダンパーの非線形性 を模擬する線形粘性要素の等価線形粘性係数 Cdea は最大速度時の吸 収エネルギー量の等価性^{22), 24)}(Fig. 2(a))より式(3)で評価する。主要 な減衰比の応答スペクトル値(&=1,2,3,5,10,15,20,30%)は外部フ

ァイルから事前に与え、任意減衰比の応答スペクトル値は減衰比の 近い上記の応答スペクトル値に式(4)の応答低減効果係数 D_hを乗じ て換算する。GRSA に関するその他の詳細は文献 21)~25)に示す。

$$R_{\text{coc}} = \sqrt{\sum_{s=1}^{n} \sum_{r=1}^{n} B_s B_r S_s(\omega_s, \xi_s) S_r(\omega_r, \xi_r) \cos(\theta_s - \theta_r) \rho_{sr}}$$
(1)

 $(a + ib \operatorname{sgn} \omega_e)k_d$ (2)

$$C_{deq} = \{ (p_d \mu_d - p_d + 1)^2 + p_d - 1 \} C_d / (p_d \mu_d)^2$$
(3)

$$D_{h} = \begin{cases} (D_{h0} - 1)(5T) + 1 & (0 \le T < 0.2) \\ D_{h0} & (0.2 \le T < 2.0) \\ D_{h0} \{\sqrt{\xi/\xi_{0}}(T-2)/40 + 1\} & (2.0 \le T < 8.0) \end{cases}$$
(4)

ここに $s \ge r$ はモード番号, ξ はモード減衰比, ρ は各種モード相関 係数, ω は固有円振動数,Sは応答スペクトル値,B=|Re($\lambda^* \beta \phi$)/sin θ , θ =tan⁻¹(-Re($\lambda^* \beta \phi$)/Re($\beta \phi$)), λ は複素固有値, β は複素刺激関数, ϕ は 複素固有ベクトル成分,*は複素共役, a,は仮想外力円振動数, a=y, $b=2\xi^{2}\gamma_{E}, \gamma_{K}=\{1+p(\mu-1)\}/\mu, \gamma_{E}=(4/\pi)(1-p)(\mu-1)/\mu^{2}, \xi^{2}=(1/\mu)\{(1/2)(\gamma_{K}/\gamma_{E})\},\$ μ は塑性率, μ_d はリリーフ率, $D_{h0}=\sqrt{(1+75\xi_0)/(1+75\xi)}$ である。

NLRHA は GRSA の精度検証に用い、増分変位の計算は Newmark B法(β=1/4)を用いる。NLRHAでは固定荷重の影響は考慮しないが、 座標移動による大変形と付加軸力による部材の幾何剛性は考慮する。

2.4 入力地震動と GRSA の精度

Fig. 3 に入力地震動の応答スペクトルを示す。同図はコアモデル の1次固有周期を重ねて示す。本研究では、建設省告示第1457号²⁶⁾ の第2種地盤の設計用スペクトルに適合した3種の模擬地震動(告 示波)を入力地震動とする。本研究ではピーク速度応答スペクトル値 $S_v = 80 \text{ cm/s}$ の設計用スペクトルに適合した地震動をレベル 2(Lv.2), $S_v = 160 \text{ cm/s}$ の設計用スペクトルに適合した地震動をレベル 4(Lv.4) と定義し、地震動入力レベルがダンパー付単層アウトリガー構造の 非線形動的応答特性に与える影響を比較する。なお、工学的基盤の 設計用スペクトルに地盤増幅係数G²⁰を乗じると本論が定義するレ ベル4入力となる。さらに長周期地震動の例として南海トラフの海 溝型巨大地震を想定する人工地震波²⁷⁾(関東圏1波KA1)も検証する。

Fig.4に32層モデルを例としたGRSAとNLRHAの最大応答値の 比較を示す。非線形性を有する NLO モデルでやや誤差が大きくな るものの, GRSA はダンパーの種類や地震入力レベルによらず NLRHAを概ね±20%の誤差で捉えられることを確認している。以降 は GRSA による動的応答特性の解析結果を分析する。

3. ダンパー付単層アウトリガー構造の非線形動的応答特性

3.1 ダンパー付単層アウトリガー構造による制御性が高いモード

Fig. 5 にアウトリガー高さ比 α またはダンパー特性(k_d または C_d)

のどちらかを固定し、もう一方が変動する場合の固有振動特性(減衰 比はダンパーによる付加分を示す)を、Fig.6に α に対するダンパー のリリーフ率または塑性率を、Fig.7に BRB モデルの各地震応答の 高さ方向分布を示す。Fig.6はオイルダンパーの最大速度や BRB の 芯材塑性化部 c_p も併記している。また、Fig. 6 と Fig. 7 は、CQC 応答に対する各モードの寄与度(式(5))も重ねて示す。

{(*i-th-Modal-Response*)/(*CQC-Response*)}²×*CQC-Response* (5) Fig. 5 に示すように,速度依存型や振幅依存型などダンパーの種 類に依らず,非線形ダンパー付単層アウトリガー構造においても 1 次モード特性がアウトリガー高さ比やダンパー量に対して敏感に変 動し制御性が高いことが分かる。Fig.6に示すように,これは,単層 アウトリガー構造のダンパーが受ける速度と変形の殆どが1次モー ド成分に支配されているためである。また,Fig.5(b)と Fig.6(c)に示 すように,ダンパーの変形に2次モード成分が含まれると2次モー ド減衰比が上昇する傾向があり,これは複層アウトリガー構造にお ける高次モード制御の可能性を示唆していると考えられる。一方,1 次モード減衰比はアウトリガー高さとダンパー量の両方について極 値が存在するが,周期はアウトリガー高さのみ極値を有する。

Fig. 7 に示すように,変位応答(Fig.7(a)(b))や基礎部の曲げモーメ ント(Fig.7(d))は1次モード支配型であり,ダンパー付アウトリガー によって効果的に応答制御が可能と考えられる。一方,従来の固定 型(Fixed)やコア部のみ(Free Core)より応答値は低減するものの,頂 部加速度(Fig.7(c))やベースシア(Fig.7(e))は2次モード以上の応答が 支配的であり、単層のダンパー付アウトリガーでは応答低減効果は 変位応答ほど期待できないことも分かる。以降の節では応答制御効 果の高い 1 次モードの減衰比(Damping ratio),層間変形角応答のピ ーク値(Peak SDR),基礎部の曲げモーメント(OTM)を主として分析 する。なお、Fig.5~Fig.7 は 32 層モデルを代表例として示している が、定性的な傾向は 16 層、64 層も同様であることを確認している。

3.2 入力レベルとダンパー種が非線形動的応答特性に与える影響

まず、無制約条件下の最適応答制御に必要な設計変数値を分析す る。Fig.8に付加減衰比の最大化, Peak SDR の最小化または OTM の 最小化に必要な最適アウトリガー高さ比 αopt, 最適ダンパー耐力 Fopt およびその場合の動的応答特性値を層数、ダンパー種類、入力レベ ルで整理して示す。同図は標準的なアウトリガー剛性 $k_t = 0.5 \times 10^6$ kN/mの結果である。同図の Response ratio は無制御状態の地震応答 が 100%に対応する。2.2 節で述べたように、ダンパー剛性比 R_{db} は ダンパーの種類によって数値に差があるため、3.2~3.4節では実務者 がダンパー選択の基準に用いる耐力量を指標とする。線形オイルダ ンパー(LO)の Foptは、初期粘性係数 Cdに非線形オイルダンパーと同 じリリーフ速度 30mm/s を乗じた見かけの耐力を示す。Fig.8(a1)~(a3) に示すように、最適アウトリガー高さ比 aopt は 0.6(付加減衰 比), 0.7~0.9(Peak SDR), 0.2~0.8(OTM)であり, OTM を除けば, 層数, ダンパー種類,入力レベルの影響を殆ど受けないことが分かる。Lin らの時刻歴応答解析を用いた BRB 付きアウトリガー構造の検討 ¹¹⁾ では、層間変形角に対する αopt=0.85 が報告されており、本研究の解

16-story, Lv.4

 F_{y} (10³ kN)

あることが分かる。BRBは粘性系ダンパーより獲得減衰比は1/2~1/6 と劣るものの、入力レベルによらず約 5%の減衰比を安定的に獲得 でき,地震応答低減効果の差異も10~20%程度であることが分かる。

次に建築計画等によってアウトリガー階が指定される制約条件下 での最適応答制御に必要なダンパー耐力とその場合の動的応答特性 値を分析する。Fig.9 と Fig.10 にアウトリガー高さ比 α を横軸にと った最適ダンパー耐力 Foptと動的応答特性値を層数,ダンパー種類, 入力レベルで整理して示す。同図らの橙色の背景塗り潰しは減衰比 が最大化または地震応答が最小化されるアウトリガー高さ比の範囲 (Fig.10)を示す。Fig.9に示すように、同じ層数で比較すると、特定の

地震応答の最小化の Fopt は、減衰比最大化と同等以上となる傾向に

Lv.4

10

1.0

0.2

\$3 5 2.0

0.6

t

0.6 0.8

^{α} (b) Plastic strain demand ^{α} ($A_p/A_e = 0.50, L_p/L_0 = 0.82$)

Fig. 12 Contour plots of BRB responses ($k_t=0.5 \times 10^6$ kN/m)

2 5

10

1.0

64-story, Lv.4

2.0

0.8

83

3.0

0.6

0.4

ある。また、同じ層数、入力レベルで比較すると一部の例を除き BRB は粘性系ダンパーと同程度かやや大きい Fopt が要求される。 Fig.10(b)(c)に示すように、地震応答低減効果は入力レベルが大きい ほど低下するが、その差異はダンパー種類に依らず 5%程度以下で ある。一方、Fig.9 に示すように、Fopt はどのアウトリガー高さ比 a に対しても複数台並列配置などを利用して十分実現可能な耐力範囲 にあり、同図を Fopt の早見表としても使用できる。ただし、一般の 場合と同様にオイルダンパー容量を限界速度時の最大耐力で捉える 場合は、リリーフ荷重が最大耐力 8 割減とすれば最適最大耐力 は 1.25Fopt と換算する必要がある。

Fig. 12 に縦軸を降伏耐力 F_y,横軸をアウトリガー高さ比αとする BRBの塑性率または塑性化部歪の等値線図を示す。同図には無制約 条件下における1次モード減衰比を最大化する座標と1次固有周期 を最小化する座標を併記している。Fig.9 や Fig.10 に示すように、1 次モード減衰比の最大化に必要な BRBの最適降伏耐力は層数や入 カレベルに応じて増大するものの、最も減衰比が最大化された状態 の塑性率は層数に依らず約8(Lv.2)または約15(Lv.4)、塑性化部歪は 約1.0%(Lv.2)または約2.0%(Lv.4)で概ね一定値、BRBの靭性として も十分許容範囲となることが分かる。同結果はアウトリガー構造に 実装する BRB 設計の最適性を推し量る指標として使用できる。

3.3 アウトリガー剛性が非線形動的応答特性に与える影響

32 層モデルを例にアウトリガー剛性がダンパー付単層アウトリ ガー構造の非線形動的応答特性に与える影響を分析する。Fig. 13 に 無制約条件下での減衰比最大化に必要な最適アウトリガー高さ比 *aopt*,最適ダンパー耐力*Fopt*および減衰比をアウトリガー剛性*k*,ダ ンパー種類,入力レベルで整理して示す。減衰比を最大化する非線 形オイルダンパー(NLO)の*aopt*は*k*tに反比例する一方,BRBは*k*tに よらず 0.6 で一定となることが分かる。アウトリガーはダンパー接 合部に相当するため、ダンパー種類によらず*k*tが大きいほど獲得減 衰比は増大するが、同時に必要な*Fopt*も増大する。Fig.14 と Fig.15 にアウトリガー高さ比の制約条件下でのピーク層間変形角(Peak SDR)最小化に必要な*Fopt*とその場合の応答比を示す。ダンパー種類 に依らず*k*tが大きいほど地震応答低減効果は増大する一方、特に応 答低減効果が高い*a*=0.6~0.9 の範囲では*Fopt*も増大する傾向にある。

3.4 長周期地震動(KA1 波)が非線形動的応答特性に与える影響

長周期地震動(Fig.3(b), KA1 波)が非線形動的応答特性に与える影響を分析する。変位応答スペクトルのピーク帯に1次モード固有周期が一致する 64 層を例とする。Fig. 16 に減衰比が最大化されるときの NLO モデルの地震応答の高さ方向分布を示す。Fig.7 と Fig.16 に示すように、2 次モード以上の成分も卓越する告示適合波の応答と比べて、長周期地震動の応答はより1次モード成分が卓越する結果となった。一方、応答値は告示適合波より小さいものの、加速度応答は依然として高次モード成分が支配的であり、1 次モードに効果的なダンパー付単層アウトリガーでは、高次モードに対する応答低減効果は大きくないと判断できる。Table 5 に KA1 波に対する 64 層モデルの設計変数の最適値を示す。最適アウトリガー高さ比は告示適合波の場合(S12 節)から変化せず、最適ダンパー耐力はレベル 2 の告示適合波の場合(Fig.8(b1))と概ね同等である。一方、3.2~3.4 節の検討から、線形オイルダンパーについて重点的に検証した前報²⁰⁾と同様に、最適ダンパー耐力 F_{opt}は最大化・最小化の対象とする動

的応答特性や入力地震動に依存して幅を持つ傾向が確認された。

3.5 1次モード減衰比最大化の設計方針の妥当性

Fig.17に縦軸をダンパー接合部剛性比 R_{db}, 横軸をアウトリガー高 さ比 α とする地震応答比の等値線図を示す。同図は 32 層モデルの レベル 2 の告示適合波の応答比(100%が無制御状態の地震応答)を例 に示す。図上の●マーカーは無制約条件下においてその地震応答を 最小化する座標,その他のマーカーは1次モード減衰比を最大化す る座標または1次固有周期を最小化する座標である。同図(a)(b)に例 示するように、1次モード減衰比を最大化する場合(×)とピーク層間 変形角応答や基部曲げモーメントを最小化する場合(●)の応答比の 差異は10%以下である。同図(c)に示すように、頂部加速度応答での 差異は20%程度であるが、前述のとおり加速度応答は2次モード以 上の成分が卓越し、1次モード制御に有効なダンパー付単層アウト

リガーによる応答制御を試みても 1G 程度までしか低減できな い。3.1~3.5節で述べた分析結果は他の層数モデルでも同様であり、 最適応答制御に求められる必要ダンパー量が対象とする動的応答特 性に依存する点を考慮すると、特定の種類の地震応答の最小化を目 的としない範囲では、非線形ダンパー付単層アウトリガー構造にお いても1次モード減衰比を最大化する設計が各種の地震応答を包括 的に低減できる設計方針として妥当と判断できる。

4. 地震動入力レベルを考慮した最適ダンパー剛性比推定式 4.1 設計用スペクトルと告示適合波の応答評価の対応関係

ダンパー付アウトリガー構造の1次モード減衰比を最大化する最 適ダンパー容量の設計式を検討する。設計式は基本計画段階で関数 電卓と手計算で容易に計算できる程度に簡易な式表現を意図する。 ただし、非線形性を有するダンパーの最適容量は入力依存性を有す るため、設計式はある入力レベルの平均的性質を表す設計用スペク トルに対する非線形動的応答特性に基づいた定式化を試みる。

Fig. 18 に設計用応答スペクトル(Fig.3)と告示適合波の応答スペク トルの GRSA 解析値の比較を示す。同図は 32 層モデルを例示して おり、告示適合波は3波の平均応答である。非線形オイルダンパー の1次モード減衰比をやや過小評価するものの,設計用応答スペク トルを用いた解析値は告示適合波の平均応答とよく対応しており, 設計用応答スペクトルは、本研究で採用した観測波の位相特性に限 らず,ある入力地震動レベルの平均的性質を代表できると判断する。

4.2 最適ダンパー剛性比推定式の提案

Damper

Linear viscous damper (LO)

Non-linear oil damper (NLO)

Buckling-restrained brace (BRB)

Spectrally matched

(a1) Damping ratio (NLO, Lv.2)

0.4 0.6 0.8

(b1) Peak SDR (NLO, Lv.2)

0.6

Design spectrum

0.8

 $C = 140 \, (kNs/mm)$

trally matched waves

Design spectrum

 $C = 120 \, (kNs/mm)$

0.2 0.4

0.2

20

(%)

ratio (

Damping

%

8.0 (Lad

.€ 19.0.6

20.4

cak 0.2 0.0 L

1次モード減衰比を最大化する最適ダンパー剛性比推定式(6)を提 案する。式(6)は前報20)の提案式と同等の式表現に入力地震動レベル を反映する項を新たに乗じている。Table 6 に示す係数 C1~C5 は,設 計用応答スペクトルで評価された最適ダンパー接合部剛性比 R_{dbopt} に非線形最小二乗法を適用して同定している²⁰⁾。ピーク速度応答ス ペクトル値 S_v(単位は cm/s)は 80cm/s~160cm/s を適用範囲とする。

Table 6 Coefficients of the proposed damper design equation

 C_1

%

ratio (

i Suid

%

p1.2

20.0

eak 0.3

0.0 L

 C_{2}

-0.87 0.28 0.31

0.49 -0.05 -0.39

3.93 0.11 -0.29

 C_{2}

 $O k = 0.25 \times 10^6 \text{ kN/m}$

1.28

0.29 0.75

-0.95 0.87

Design spectrum

atched wave $k = 0.9 (10^6 \text{ kN/m})$

 $k_{\rm d} = 1.1 \ (10^6 \ {\rm kN/m})$

0.8

0.6 0.8

Design spectrum

ectrally matched waves

0.4

0.4 0.6

(b2) Peak SDR (BRB, Lv.2)

0.2

(a2) Damping ratio (BRB, Lv.2) α

0

Fig. 19に16層から64層のダンパー付単層アウトリガー構造の1 次モード減衰比、ピーク層間変形角の応答比ならびに基部曲げモー メントの応答比を示す。同図の青色塗り潰しの●マーカーは提案推

定式で評価された最適ダンパー剛性比から復元したダンパー容量を 設定したモデルの解析結果を示し、〇マーカーは全解析結果を示す。 提案式は1次モード減衰比を最大化する最適ダンパー容量を良好に 推定できており、ピーク層間変形角や基部曲げモーメントも概ね最 小値まで低減できている。

5. 提案式を用いた 400m 級超高層建物の1次モード減衰比最大化 5.1 建物概要

最後に、日本国内で計画が想定される 400 級超高層建築物を対象 に、提案式を用いた1次モード減衰比を最大化する構造計画を試み、 その応答制御効果を検証する。Fig.20 に対象建物を示す。対象建物 は約100m四方の正方形平面を有する軒高さ396m(70層)の超高層建 物である²⁰⁾。本章では、筆者らの既往研究^{5,20)}と同様に、同建物の 軒高、平面規模、周期性を模擬する柱梁ピン接合のダンパー付アウ トリガー構造の4構面を1つに束ねたDMモデルに置換して最適設 計する。DMモデルのコア部にはフルモデルのコア部と等価な*EI*を 与える。コア部の質量はFig.20 の灰色部に示す面積分をアウトリガ ーと中央コアが負担すると考える。DMモデルのコア部はティモシ エンコ梁要素でモデル化し、せん断変形の影響を考慮する。アウト リガー長さ1,はより実計画に近似した 20mとし、□-1000×60 の箱 型断面部材を3層積層したトラス(*k*=4.09×10⁶kN/m)とする。3章ま での知見に基づき、アウトリガー高さ比αは0.6とする。最適設計 は告示適合波の入力レベル毎に行って耐震性能を比較分析する。

5.2 単層アウトリガー構造として最適設計する場合

Table 7 に入力レベルに対応した最適設計解の諸元を, Fig.21 に最 適設計解を含む 1 次モード減衰比-α 関係を示す。Table 7 の XX-Lv.2 はレベル 2 の告示適合波に対してダンパーXX を最適設計した場合 を意味する。Fig.21 の黄色マーカーに示すように,最適設計解の 1 次減衰比は想定通り最大化されており,一例ではあるものの,提案 式が 400m 級超高層建物にも適用できることが確認できる。

Table 8 に各設計解のピーク地震応答を、Fig.22 に地震応答の高さ

(a) Section (b) Outrigger floor framing plan Fig. 20 Structure drawings (70 floors, 396m building height) Table 7 Optimized model specification

方向分布をそれぞれ入力レベル毎に整理して示す。Table 8 の赤色塗 り潰しは最適設計時と地震応答時の対象入力レベルが一致する場合 を示し、白抜きは入力レベルが異なる場合の地震応答を示す。 Table 8(a)(b)の比較に示すように、赤色塗り潰しの最適設計解は設計 時の入力レベルの地震応答時の方が1次モードの付加減衰比が大き く, 想定通り最適設計できていると考えられる。その一方で, Fig.22 に示すように、例えばレベル4入力の最適設計解(NLO-Lv.4と BRB-Lv.4)の地震応答低減効果は、レベル4入力ではレベル2入力の最適 設計解(NLO-Lv.2 と BRB-Lv.2)より当然優れるが、レベル 2 入力で はレベル 2 入力の最適設計解(NLO-Lv.2 と BRB-Lv.2)より劣る結果 が得られた。この結果は、非線形ダンパー付きアウトリガー構造の 減衰性能に入力依存性があり、任意の入力に対して任意の地震応答 を最小化できるような絶対的な最適解が存在しないことを示唆して いる。また,非線形ダンパー付アウトリガー構造の最適設計時には, 従来の性能設計の要求性能(入力レベル毎の建物損傷状態,層間変形 角,応答加速度など)に加えて,減衰性能を最大化する入力レベルを 決定する必要があり,対象とする建物のレジリエンスについても実 務者と施主との間で同意を得る必要があると考えられる。

5.3 複層(4層)アウトリガー構造への置換の検討

一方,コア部の設計という観点では,400m級超高層建物に単層ア ウトリガー構造を適用することは必ずしも現実的とはいえない。そ こで前報²⁰⁾と同様に,この建物について最適化された単層アウトリ ガー構造を複層(4層)アウトリガー構造へ置換することを試みる。

Fig.23 に複層アウトリガーへの置換の概念図を示す。本検討では, α=0.6 を境界に同図(a)に示す比率でコア部を 5 分割する高さにアウ トリガートラスを設ける。各層のダンパー付アウトリガーは,最適 化された単層と同じ諸元をそのまま設置する Fourfold(同図(c),単層 から4倍のダンパー付アウトリガーが導入される),アウトリガー数 を4層増やす代わりにダンパー付アウトリガーの性能を1/4とする Quarter(同図(d)),同様に1/2とする Half(同図(c))を検討する。

Table9にダンパー付4層アウトリガー構造の減衰性能とピーク地 震応答をダンパーと地震応答時の入力レベル別に整理して示す。同 表の赤色塗り潰しは最適設計時と地震応答時の対象入力レベルが一 致する場合を示す。同表(a)~(c)に示すように、単層アウトリガーの 性能を 4 層のアウトリガーに等分して配置する Quarter が単層 (Single)と同等以上の付加減衰比を獲得できる。単層の性能をそのま ま4層に配置する Fourfold は単層より固有周期が短くなるものの付 加減衰比が1%以上低下するため地震応答値は単層から増大する。 単層の半分の性能を4層に配置する Half は Fourfold より付加減衰比 の低下は顕著ではなく、固有周期も単層から短くなったため、各地 震応答値は全ての検討ケースで概ね最小となった。ただし、いずれ の場合でも,単層との地震応答値の差異は微小といえる範囲にあり, ダンパー導入量がその他と比べて8倍~16倍多いFourfoldを除けば、 実際の設計では Quarter と Half どちらを選択しても良いと考えられ る。その一方で、ダンパー付4層アウトリガーの付加減衰比は単層 から顕著に増大したとは言えず、複層アウトリガー構造の最適設計 法に用いる最適剛性比推定式を今後検討する必要がある。

6. 結

本研究では、相対速度の1 乗に比例する線形オイルダンパーと

Table 8 Mean	seismic	responses	of single	damped	outrigger
(a)	Mean seis	mic responses	s against Ly	2 waves	55

	(4) wiedli i	seisinie respons	cs again	St LV.2 wav		
	Additional	Natural	Roof	Peak	Roof	OTM	Base shear
	damping	period	displacement	SDR	acceleration	(10^{6} kNm)	(10^3 kN)
	ratio (%)	(s)	(m)	(rad %)	(m/s ²)	(10 KINIII)	(10 KN)
Free Core	0	7.93	2.05	0.75	6.62	42.4	331.0
Fixed	0	7.28	1.97	0.71	6.58	42.2	325.5
NLO-Lv.2	4.43	7.60	1.57	0.58	6.77	35.2	309.6
NLO-Lv.4	3.13	7.38	1.62	0.60	6.81	36.6	314.8
BRB-Lv.2	1.34	7.59	1.80	0.66	6.86	38.9	318.3
BRB-Lv.4	0.84	7.44	1.89	0.69	6.87	40.5	321.1
	(b) Mean	seismic respons	es again	st Lv.4 way	es	
	Additional	Natural	Roof	Peak	Roof		
	Additional	ivaturar monio d	diamla a amount	CDD	acceleration	OTM	Base shear
	traniping	period	(m)	SDR (mod 0/)	((²)	(10^{6} kNm)	(10^3 kN)
	Tauo (70)	(s)	(11)	(rad %)	(m/s)	01.05	
Free Core	0	7.93	3.99	1.44	11.27	81.05	593.1
Fixed	0	7.28	3.68	1.33	11.49	79.05	597.1
NLO-Lv.2	3.54	7.80	3.32	1.22	11.46	70.32	557.1
NLO-Lv.4	4.42	7.59	3.06	1.13	11.55	67.43	559.5
BRB-Lv.2	1.35	7.71	3.51	1.28	11.71	74.26	578.3
BRB-Lv.4	1.49	7.57	3.38	1.23	11.71	72.66	575.7
[NLO-Lv.2		- BRB-Lv.2	2	- Free	Core ·	
	NLO-Lv4		- BRB-Lv4	4	Fixe	d	
396							
		1			ili I I	6	
300-							
				li lil	7		
a –		outrigger-	-outrigger		/ – outri	igger	
±200							
100							
ă 🖌	/					1	
100-							
100							
V							
0.0	0.5 1.0 1.	5 2.0	2.5 0.0 0.2 0	.4 0.6	0.8 0	2 4	6 8
late	ral displace	ment (m)) story drift r	atio (rad	%) latera	l acceleratio	on (m/s²)
(a1) l	Displacemen	nt, Level	2 (b1) Story drif	t ratio, L	evel 2 (c1) A	Acceleration	n, Level 2
396		1///:	1			-	
		: <i>[]</i> [[] _					
200	1			i/		N N	
300		1		<i>! </i>	// [
a		outrigger	autrigger		/ oute		
Ē	1111	ourngger	outrigger-	111		igger	
표 ²⁰⁰						/	
lei	1			i Mi			
	/		1 1				
100				!!			
1							
0	1 2	3	4 0 0 05	1.0		4	8 12
late	eral displáce	ment (m	story drift r	atio (rad	%) latera	acceleration	(m/s^2)
(a2)	Displaceme	nt, Level	4 (b2) Story drif	t ratio, L	evel 4 (c2)	Acceleration	n, Level 4
Fig 22	2 Seismi	c respo	onse distribu	tion (o	ptimized t	o Lv 2 v	vaves)
· · · · · ·							
	Ø[0.84	<i>k</i> ,	, k,/4	, k	./2
	പ്		= 0.84	,		$k_d/4$	$k_{d}/2$
$\alpha = 0.6$	Ĩ.		= 0.68 k.	κ_t	$k_d = \frac{\kappa_l/4}{k_l}$	$k_d/4$	$k_{d}/2$
······		+ -	· · · · · · · · · · · · · · · · ·	k_d	1-14		
		- α	= 0.48	κ_t	$k_d = \frac{\kappa_d}{4}$	$k_d/4$	$k_d/2$
	2			Ī.		ĪĪ.	
	<u> </u>	α	= 0.24	k_t	$k_d = \frac{k_l/4}{k_l}$	$-\frac{k}{4}$	k./2
	2			T		T T	
(a)	A rule of ti	anslatio	n (b) Single	e (c) Fo	urfold (d) Q	uarter (e	e) Half
E : 0.0							

Fig. 23 Translation from single to quad damped outrigger system

Bilinear 型の履歴を描く非線形オイルダンパー,座屈拘束ブレース (BRB)に代表される弾塑性ダンパーを対象に,地震動入力レベルを 考慮したダンパー付単層アウトリガー構造の非線形動的応答特性を 分析した。本研究の範囲で得られた結論は以下の通りである。

1)ダンパーの種類や非線形性の有無に関わらず、ダンパー付単層ア ウトリガー構造の固有振動特性(付加減衰比、固有周期)は、ダンパ ーが受ける変形の殆どが1次モード応答に由来するため、ダンパ ー容量やアウトリガー高さの変動に対して1次モードが敏感に反 応し制御性が高く、1次モード減衰比を最大化する設計が総合的 に優良である。ただし、2次以上の高次モードが支配的な頂部加速 度やベースシアの応答低減効果はあまり高くない。また、長周期 帯にピークを有する地震動の場合では,絶対値は小さくなるが, 頂部加速度やベースシアは高次モードが依然として支配的となる。

- 2)床荷重 0.8 ton/m², アウトリガースパン 12~16m, アウトリガー曲 げ剛性 0.25~1.0×10⁶kN/m かつ軒高さ 256m 以下のアウトリガー構 造では,非線形オイルダンパーを搭載する場合の 1 次モード減衰 比は最大 10%以上獲得できる。BRB を搭載する場合の獲得減衰比 は最大約 5%で,非線形オイルダンパーから 1/2~1/6 まで低下する が,入力レベルによる獲得減衰比の変化は殆ど無く安定的である。 地震応答低減効果も,非線形オイルダンパーが BRB より優れる が,1 次モード減衰比の差異に比べて,応答比の差異は約 10~20% である。アウトリガー剛性は高い程減衰比は増大し,地震応答低 減効果は高まるが,最適設計に必要なダンパー耐力は増大する。
- 3)建物層数やダンパーの種類,入力レベルに依らず,最適アウトリ ガー高さ比αは0.6(付加減衰比),0.7~0.9(ピーク層間変形角)であ る。最適ダンパー耐力は入力の種類や目的関数となる動的応答特 性に依存するが,定性的な傾向として,地震応答を最小化する場 合の方が減衰比最大化の場合より大きく,同じ建物層数と入力レ ベルで比較するとBRBの方が速度依存型ダンパーより大きい。減 衰比が最大化される時のBRB塑性率は層数に依らず約8(Lv.2)と 約15(Lv.4)であり,全長5~8mに対する塑性化部長さの比率が0.82 の場合で塑性化部歪は約1.0%(Lv.2)と約2.0%(Lv.4)である。
- 4)地震動入力レベルを考慮したダンパー付単層アウトリガー構造の1次モード減衰比を最大化する非線形ダンパーの最適剛性比推定式を提案し、提案式は最適設計解を良好に捉え、変位地震応答は概ね最小化されることを確認した。ただし、日本で想定される規模である400m級超高層建物を対象とした試設計から、設計時の想定と異なる入力レベルでは、減衰性能が低下し地震応答が増大する結果が示された。最適化された単層アウトリガーを概ね均等配置された4層アウトリガー構造に置換する場合は、単層の1/2または1/4の性能を有するダンパー付アウトリガーを配置すればよいことが確認された。

謝辞

本研究は JSPS 若手研究(No. 21K14288)の助成を戴きました。ここ に謝意を記します。

参考文献

- Smith, S. and Salim, I.: Parameter Study of Outrigger-Braced Tall Building Structures, Journal of Structural Division, ASCE, Vol 107, No. 10, pp.2001-2014, 1981.
- Smith, S. and Coull, A.: Tall Building Structures: Analysis and Design, Chapter 14, John Wiley & Sons, Inc., 1991.
- Smith, R. and Willford, M.: The damped outrigger concept for tall buildings, The Structural Design of Tall and Special Buildings, Vol. 16(4), pp. 501-517, 2007.
- Lago A., Trabucco, D. and Wood, A.: Damping Technologies for Tall Buildings Theory, Design Guidance and Case Studies, CTBUH, Elsiver Inc., 2019.
- 5) Terazawa, Y: Study of optimal layout and distribution of oil dampers on both of 400m-height damped outrigger systems and damped braced tube systems, Report of 2019 research grant of JSSI for seismic isolated structures and structures with dampers, MENSHIN, No.109, 2020.7 (in Japanese) 寺澤友貴: 400m 級アウトリガー構造および外殻構造のオイルダンパー 見済到際、空島したじ間ナス工作, 2010 た席(11日) 在電機は、加速

最適配置・容量分布に関する研究,2019 年度(11回)免震構造・制震 構造に関わる研究助成の成果報告,MENSHIN,No.109,2020.7

Table 9 Mean	seismic res	sponses o	of quad of	damped	outriager
(a) Mean se	eismic respons	es of BRB n	nodels age	ainst t v 2	waves

()		1					
BRB	Additional	Natural	Roof	Peak	Roof	OTM	Base shear
L v 2 input	damping	period	displacement	SDR	acceleration	(10^6 kNm)	(10^3 kN)
Eviz input	ratio (%)	(s)	(m)	(rad %)	(m/s ²)	(IU KINII)	(10 KIN)
Single-Lv.2	1.34	7.59	1.80	0.66	6.86	38.86	318.3
Single-Lv.4	0.84	7.44	1.89	0.69	6.87	40.53	321.1
Quarter-Lv.2	1.39	7.64	1.80	0.65	6.68	38.18	311.1
Quarter-Lv.4	1.11	7.48	1.83	0.66	6.62	38.76	308.6
Half-Lv.2	1.26	7.42	1.79	0.64	6.52	37.93	302.2
Half-Lv.4	0.26	7.25	1.87	0.67	6.62	39.72	312.2
Fourfold-Lv.2	0.24	7.19	1.86	0.66	6.55	39.40	308.6
Fourfold-Lv.4	0.00	7.12	1.91	0.68	6.74	40.50	322.2
(b) Mean seismic responses of BRB models against Lv.4 waves							
DDD	Additional	Natural	Roof	Peak	Roof	OTM	Base shear
DKD, Ly 4 immut	damping	period	displacement	SDR	acceleration	(1061)	(103 1)
Lv.4 Input	ratio (%)	(s)	(m)	(rad %)	(m/s ²)	(10° KNm)	(10° kN)
Single-Lv.2	1.35	7.71	3.51	1.28	11.71	74.26	578.3
Single-Lv.4	1.49	7.57	3.38	1.23	11.71	72.66	575.7
Quarter-Lv.2	1.26	7.74	3.56	1.29	11.44	74.19	568.2
Quarter-Lv.4	1.55	7.62	3.36	1.22	11.36	71.36	560.6
Half-Lv.2	1.78	7.57	3.27	1.19	11.41	70.18	562.6
Half-Lv.4	1.43	7.39	3.31	1.19	11.41	71.18	565.9
Fourfold-Lv.2	1.45	7.32	3.27	1.18	11.30	70.53	560.0
Fourfold-Lv.4	0.46	7.18	3.50	1.24	11.35	74.58	573.2
Fourfold-Lv.4 0.46 7.18 3.50 1.24 11.35 74.58 573.2							
(c)	Mean seis	mic resp	onses of NI	.O mod	els against L	v.2 waves	
(c)	Mean seis Additional	mic resp Natural	oonses of NI Roof	LO mod Peak	els against L Roof	v.2 waves	
(c) NLO,	Mean seis Additional	mic resp Natural	oonses of NI Roof displacement	LO mod Peak SDR	els against L Roof acceleration	v.2 waves OTM	Base shear
(c) NLO, Lv.2 input	Mean seise Additional damping ratio (%)	mic resp Natural period (s)	Roof displacement (m)	LO mod Peak SDR (rad %)	els against L Roof acceleration (m/s ²)	OTM (10 ⁶ kNm)	Base shear (10^3 kN)
(c) NLO, Lv.2 input	Mean seise Additional damping ratio (%)	mic resp Natural period (s)	Roof displacement (m)	LO mod Peak SDR (rad %)	els against L Roof acceleration (m/s ²)	OTM (10 ⁶ kNm)	Base shear (10^3 kN)
(c) NLO, Lv.2 input Single-Lv.2 Single-Ly.4	Mean seise Additional damping ratio (%) 4.43 3.13	mic resp Natural period (s) 7.60 7.38	Roof displacement (m) 1.57	D mod Peak SDR (rad %) 0.58 0.60	els against L Roof acceleration (m/s ²) 6.77	v.2 waves OTM (10 ⁶ kNm) <u>35.18</u> <u>36.59</u>	Base shear (10 ³ kN) 309.6 314.8
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4	Mean seise Additional damping ratio (%) 4.43 3.13 4.47	mic resp Natural period (s) 7.60 7.38 7.68	Roof displacement (m) 1.57 1.62	O mod Peak SDR (rad %) 0.58 0.60	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59	Base shear (10 ³ kN) 309.6 314.8 279.4
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Ourster-Lv.4	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95	mic resp Natural period (s) 7.60 7.38 7.68 7.43	Roof displacement (m) 1.57 1.62 1.57	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half Lv.2	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33	bonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half-Lv.2 Half-Lv.4	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22	oonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 163	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.4 Half-Lv.2 Half-Lv.4 Fourfield_L v.2	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22 7.15	Boonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 1.63	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 34.90	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 291.5
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half-Lv.2 Half-Lv.2 Half-Lv.2 Fourfold-Lv.2	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.55 2.56 1.61	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22 7.15 7.12	Boonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 1.63 1.60	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.47	v.2 waves OTM (10 ⁶ kNm) <u>35.18</u> <u>36.59</u> <u>33.35</u> <u>33.90</u> <u>32.61</u> <u>35.45</u> <u>34.90</u> <u>36.14</u>	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 291.5 303 2
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half-Lv.2 Half-Lv.2 Fourfold-Lv.2 Fourfold-Lv.2 (d)	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22 7.15 7.12 mic resp	Description Second	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 0.59 0 mod	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.47 els against L	v.2 waves OTM (10 ⁶ kNm) <u>35.18</u> <u>36.59</u> <u>33.35</u> <u>33.90</u> <u>32.61</u> <u>35.45</u> <u>34.90</u> <u>36.14</u> v.4 waves	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 291.5 303.2
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.4 Half-Lv.2 Half-Lv.4 Fourfold-Lv.4 Gurfold-Lv.4 (d)	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.43 7.43 7.22 7.15 7.12 mic resp Natural	Nonses of NI Roof displacement (m) 1.57 1.62 1.57 1.63 1.60 1.66 ponses of NI Poof	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 O mod Peak	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.40 6.32 6.47 els against L Roof	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 34.90 36.14 v.4 waves	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 291.5 303.2
(c) NLO, Lv.2 input Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half Lv.2 Half Lv.4 Fourfold-Lv.2 Fourfold-Lv.4 (d) NLO,	Mean seis: Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22 7.15 7.12 mic resp Natural period	oonses of NI Roof displacement (m) 1.57 1.55 1.49 1.63 1.60 1.66 0onses of NI Roof displacement	-O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 -O mod Peak SDR	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.40 6.32 6.47 els against I Roof acceleration	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 34.90 36.14 v.4 waves OTM	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 295.2 295.2 295.2 295.2 303.2 Base shear
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half-Lv.2 Half-Lv.2 Half-Lv.4 Fourfold-Lv.2 (d) NLO, Lv.4 input	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional damping ratio (%)	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22 7.15 7.12 mic resp Natural period (s)	Soonses of NI Roof displacement (m) 1.57 1.62 1.57 1.62 1.55 1.49 1.63 1.60 1.66 conses of NI Roof displacement (m)	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 O mod Peak SDR (rad %)	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.40 els against L Roof acceleration (m/c ²)	v.2 waves OTM (10 ⁶ kNm) 35.18 33.35 33.39 32.61 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm)	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 291.5 303.2 Base shear (10 ³ kN)
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half-Lv.2 Half-Lv.2 Half-Lv.2 Fourfold-Lv.2 (d) NLO, Lv.4 input C.L.4 input	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional damping ratio (%)	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22 7.15 7.12 mic resp Natural period (s)	oonses of NI Roof displacement (m) 1.57 1.62 1.55 1.49 1.63 1.60 1.66 00nses of NI Roof displacement (m)	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 O mod Peak SDR (rad %)	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.47 els against L Roof acceleration (m/s ²) 11.46	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.30 32.61 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm)	Base shear (10 ³ kN) <u>309.6</u> 314.8 279.4 289.3 279.4 295.2 291.5 303.2 Base shear (10 ³ kN)
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.4 Half-Lv.4 Half-Lv.4 Fourfold-Lv.4 (d) NLO, Lv.4 input Single-Lv.2	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional damping ratio (%) 3.54 4.47	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.22 7.15 7.12 mic resp Natural period (s) 7.80 7.50	oonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 1.63 1.60 1.66 00nses of NI Roof displacement (m) 3.32 2.06	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.54 0.57 0.59 O mod Peak SDR (rad %) 1.22	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.47 els against L Roof acceleration (m/s ²) 11.46	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm) 70.32 67.42	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 291.5 303.2 Base shear (10 ³ kN) 557.1 550.5
(c) NLO, Lv.2 input Single-Lv.4 Quarter-Lv.4 Half-Lv.2 Fourfold-Lv.4 Fourfold-Lv.4 (d) NLO, Lv.4 input Single-Lv.2 Single-L	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 1.61 Mean seis Additional damping ratio (%) 3.54 4.47	mic resp Natural period (s) 7.60 7.38 7.43 7.33 7.22 7.15 7.12 mic resp Natural period (s) 7.80 7.80 7.89	oonses of NI Roof displacement (m) 1.57 1.57 1.57 1.57 1.62 1.63 1.60 1.66 Donses of NI Roof displacement (m) 3.32 3.06 2.51	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 O mod Peak SDR (rad %) 1.22 1.13	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.40 8.32 6.40 1.32 6.47 els against L Roof acceleration (m/s ²) 11.46 11.55 10.50	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm) 70.32 67.43 21.33	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 291.5 303.2 Base shear (10 ³ kN) 557.1 559.5
(c) NLO, Lv.2 input Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half-Lv.4 Fourfold-Lv.4 Fourfold-Lv.4 (d) NLO, Lv.4 input Single-Lv.2 Single-Lv.2 Single-Lv.2 Output L-1	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 1.61 Mean seis Additional damping ratio (%) 3.54 4.42 2.76	mic resp Natural period (s) 7.60 7.38 7.43 7.43 7.43 7.43 7.43 7.43 7.12 mic resp Natural period (s) 7.80 7.59 7.80	oonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 1.63 1.60 1.66 00nses of NI Roof displacement (m) 3.32 3.06 3.51 2.20	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 O mod Peak SDR (rad %) 1.22 1.13 1.27	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.40 6.32 6.47 els against I Roof acceleration (m/s ²) 11.46 11.55 10.89 8.06	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm) 70.32 67.43 71.33	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 291.5 303.2 Base shear (10 ³ kN) 557.1 559.5 529.5 479.1
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Half-Lv.2 Half-Lv.2 Fourfold-Lv.4 Fourfold-Lv.4 (d) NLO, Lv.4 input Single-Lv.2 Single-Lv.2 Single-Lv.4 Quarter-Lv.4 Quarter-Lv.4 Quarter-Lv.2 Quarter-Lv.4 Lv.4 Lv.2 Single-Single-Singl	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional damping ratio (%) 3.54 4.42 2.76 3.70	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.33 7.22 7.15 7.12 mic resp Natural period (s) 7.80 7.59 7.86 7.80 7.59	oonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 1.63 1.60 1.66 00nses of NI Roof displacement (m) 3.32 3.06 3.51 3.29	O mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.57 0.59 O mod Peak SDR (rad %) 1.22 1.13 1.27 1.19	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.40 6.32 6.47 els against L Roof acceleration (m/s ²) 11.46 11.55 10.89 8.06	v.2 waves OTM (10 ⁶ kNm) 35.18 33.35 33.39 32.61 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm) 70.32 67.43 71.33 67.30	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 289.3 279.4 295.2 291.5 303.2 Base shear (10 ³ kN) 557.1 559.5 529.5 478.1 602.5
(c) NLO, Lv.2 input Single-Lv.4 Quarter-Lv.4 Half-Lv.4 Half-Lv.4 Fourfold-Lv.4 (d) NLO, Lv.4 input Single-Lv.2 Quarter-Lv.2 Quart	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional damping ratio (%) 3.54 4.42 2.76 3.70 5.23 5.24	mic resp Natural period (s) 7.68 7.43 7.33 7.22 7.15 7.12 mic resp Natural period (s) 7.80 7.80 7.86 7.80 7.86 7.80 7.86 7.80 7.86	oonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 1.63 1.60 1.66 00nses of NI Roof displacement (m) 3.32 3.06 3.51 3.29 2.94 2.94	JO mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 JO mod Peak SDR (rad %) 1.22 1.13 1.27 1.19 1.06	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.47 els against L Roof acceleration (m/s ²) 11.46 11.55 10.89 8.06 10.54	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm) 70.32 67.43 71.33 67.30 62.39 (1.26)	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.2 291.5 303.2 Base shear (10 ³ kN) 557.1 559.5 529.5 529.5 478.1 502.5 456.0
(c) NLO, Lv.2 input Single-Lv.2 Single-Lv.4 Quarter-Lv.4 Half-Lv.4 Half-Lv.4 Fourfold-Lv.4 (d) NLO, Lv.4 input Single-Lv.2 Single-Lv.4 Quarter-Lv.2 Quarter-Lv.2 Half-Lv.4 Pourfold-Lv.4 Quarter-Lv.2 Single-Lv.4 Quarter-Lv.2 Single-Lv.4 Pourfold-Lv.4 Single	Mean seis Additional damping ratio (%) 4.43 3.13 4.47 3.95 4.32 2.55 2.56 1.61 Mean seis Additional damping ratio (%) 3.54 4.42 2.76 3.70 5.23 5.34	mic resp Natural period (s) 7.60 7.38 7.68 7.43 7.32 7.15 7.12 mic resp Natural period (s) 7.80 7.59 7.80 7.59 7.80 7.59 7.80 7.59	oonses of NI Roof displacement (m) 1.57 1.62 1.57 1.55 1.49 1.63 1.60 1.66 00nses of NI Roof displacement (m) 3.32 3.06 3.51 3.29 2.94 2.93	JO mod Peak SDR (rad %) 0.58 0.60 0.57 0.56 0.54 0.58 0.57 0.59 JO mod Peak SDR (rad %) 1.22 1.13 1.27 1.19 1.06 1.06	els against L Roof acceleration (m/s ²) 6.77 6.81 6.26 6.39 6.23 6.40 6.32 6.40 els against L Roof acceleration (m/s ²) 11.46 11.55 10.89 8.06 10.54 7.67 10.89	v.2 waves OTM (10 ⁶ kNm) 35.18 36.59 33.35 33.90 32.61 35.45 35.45 34.90 36.14 v.4 waves OTM (10 ⁶ kNm) 70.32 67.43 71.33 67.43 67.30 62.39 61.36	Base shear (10 ³ kN) 309.6 314.8 279.4 289.3 279.4 295.3 291.5 303.2 Base shear (10 ³ kN) 557.1 559.5 529.5 529.5 478.1 502.5

- Chen., Y., McFarland, D., Wang, Z., Spencer, B. and Bergman, L.: Analysis of Tall Buildings with Damped Outriggers, Journal of Structural Engineering, ASCE, Vol. 136, No. 11, pp. 1435-1443, 2010.
- T, Tan, P., Fang, C. and Zhou, F.: Dynamic characteristics of a novel damped outrigger system, Earthquake Engineering and Engineering Vibration, Vol. 13(2), pp. 293-304, 2014.
- Deng, K., Pan, P., Lam, A., and Xue, Y.: A simplified model for analysis of highrise buildings equipped with hysteresis damped outriggers, The Structural Design of Tall and Special Buildings, Vol. 23(15), pp.1158-1170, 2014.
- Huang, B. and Takeuchi, T.: Dynamic Response Evaluation of Damped-Outrigger Systems with Various Heights, Earthquake Spectra, Vol. 33, No. 2, pp. 665-685, 2017.
- 10) Zhou, Y., Xing, L., and Zhou, G.: Spectrum Analysis-Based Model for the Optimal Outrigger Location of High-Rise Buildings, Journal of Earthquake Engineering, pp. 1-26, 2019.
- Lin, P.-C., Takeuchi, T. and Matsui, R.: Seismic performance evaluation of single damped-outrigger system incorporating buckling- restrained braces, Earthquake Engineering and Structural Dynamics, Volume 47, No. 12, pages 2343-2365, 2018.
- Lin, P.-C., Takeuchi, T. and Matsui, R. : Optimal design of multiple dampedoutrigger system incorporating buckling-restrained braces, Engineering Structures, Vol. 194, pp. 441-457, 2019.
- 13) Morales-Beltran, M., Turan, G., Dursun, O. and Nijsse, R.: Energy dissipation and performance assessment of double damped outriggers in tall buildings under strong earthquakes, The Structural Design of Tall and Special Buildings, Vol. 28(1), 2018;e1554, 2018.
- 14) Ding, J., Wang, S. and Wu, H.: Seismic performance analysis of viscous

damping outrigger in super high-rise buildings, The Structural Design of Tall and Special Buildings, Vol. 27(13), 2018;e1486, 2018.

- 15) Zhou, Y. and Li, H.: Analysis of a high-rise steel structure with viscous damped outriggers. The Structural Design of Tall and Special Buildings, Vol. 23(13), pp. 963-979, 2014.
- 16) Sun, F., Hu, Z., Chen, G., Xie, L. and Sheng, L.: Shaking table test on seismic resonant behavior of core - outrigger structure, The Structural Design of Tall and Special Buildings, Vol. 26(6), 2017;e1349. 2016.
- 17) Omika Y., Yamamoto Y., Kawano K. and Fukuda Y.: Study on the structural principle of the flexural deformation response control system, Journal of Structural and Construction Engineering (Transactions of AIJ), No.602, pp.111-118, 2006.4 (in Japanese)
- 18) Omika Y., Yamamoto Y., Kawano K. and Fukuda Y.: Study on the structural characteristic of the flexural deformation response control system, Journal of Structural and Construction Engineering (Transactions of AIJ), No.612, pp.39-46, 2007.2 (in Japanese)
- Smith, R.: The Damped Outrigger -Design and Implementation, International Journal of High-Rise Buildings, Vol. 5(1), pp.63-70, 2016.
- 20) Terazawa Y., Asai T., Ishibashi Y. and Takeuchi, T.: Effect of design parameters on dynamic response characteristic of single damped outrigger system incorporating linear viscous dampers, Journal of Structural and Construction Engineering (Transactions of AIJ), Vol.85, No.774, pp.1067-1077, 2020.8 (in Japanese)
- 21) Terazawa Y. and Takeuchi T.: Generalized Response Spectrum Analysis for Structures with Dampers, Earthquake Spectra, EERI, 2018.5., DOI: https://doi.org/10.1193/092217EQS188M (accessed 2020.12.1)
- 22) The Japan Society of Seismic Isolation: Manual for Design and Construction of Passively-Controlled Buildings 3rd Edition, Daioh Co., Ltd, 2013 (in Japanese) 日本免震構造協会: パッシブ制振構造設計施工マニュアル第 3 版, 2013
- 23) Terazawa, Y. and Takeuchi, T.: Optimal damper design strategy for braced structures based on generalized response spectrum analysis., Jpn Archit Rev.,2019:00:1-17., https://doi.org/10.1002/2475-8876.12122 (accessed 2020.12.1)(参照日:2020.12.01)
- 24) Terazawa, Y., Sano, W. and Takeuchi, T.: Design method of seismically isolated structures based on generalized response spectrum analysis, Journal of Structural and Construction Engineering (Transactions of AIJ), Vol.85, No.775, pp.1187-1197, 2020.9 (in Japanese)
- Sinha, R. and Igusa, T.: CQC and SRSS methods for non-classically damped structures, Earthquake Engineering & Structural Dynamics, Vol. 24, pp. 615-619, 1995.
- Notification No. 1457 of the Ministry of Construction, 2000.5 (in Japanese) 建設省告示第 1457 号, 2000.5
- 27) The task committee of steel structures in AIJ: The state of art of Japanese seismic design of steel structures against large subduction zone earthquakes and large inland earthquakes, Document for the panel discussion of 2015 AIJ annual meeting, 2015.9 (in Japanese)

日本建築学会構造委員会鋼構造運営委員会:巨大海溝型地震・内陸地震 に対する鋼構造の取り組み, 2015 年度日本建築学会大会パネルディス カッション資料, 2015.9

NON-LINEAR DYNAMIC RESPONSE CHARACTERISTIC OF SINGLE-DAMPED OUTRIGGER SYSTEMS WITH OIL DAMPERS OR ELASTO-PLASTIC DAMPERS CONSIDERING DESIGN EARTHQUAKE LEVELS

Yuki TERAZAWA^{*1}, Yoji ISHIBASHI^{*2}, Hiroki OMURA^{*3}, Tomoki ASAI^{*4} and Toru TAKEUCHI^{*5}

*¹ Assist. Prof., Dept. of Arch. and Build. Eng., Tokyo Institute of Technology, Dr.Eng.
*² Mitsubishi Jisho Sekkei Inc., M.Eng.

* ³ Grad. Student, Dept. of Arch. and Build. Eng., Tokyo Institute of Technology

*⁴ Former Grad. Student, Tokyo Institute of Technology, M.Eng.

*⁵ Prof., Dept. of Arch. and Build. Eng., Tokyo Institute of Technology, Dr.Eng.

The damped outrigger system is in widespread in seismic area as a damping modification system for tall buildings. While Smith and Willford who are the proposers of this damped outrigger system recommend to confirm the modal damping ratio in the design, the relationships between the exact damping performance of the non-proportional system and its seismic response reduction effect has not been deeply investigated yet. Therefore, this paper investigated the non-linear dynamic response characteristic of single-damped outrigger systems with oil dampers or elasto-plastic dampers considering design earthquake levels. In section 2, the model parameters and the numerical simulation methods are briefly explained. Both Japanese spectrally matched waves and a long period earthquake considering the soil structure in Tokyo area are adopted in this study. In section 3, the non-linear dynamic response characteristic of damped outrigger systems is deeply discussed, focusing on the damper property, the building height, the design earthquake levels and the flexural stiffness of outrigger truss. In section 4, optimal damper design equations for single damped outrigger system to maximize 1st mode damping ratio are proposed and validated against the numerical simulation results in section 3. In section 5, the design equations are applied to a Japanese super tall building, and a design algorithm to translate the optimized single damped outrigger to quad damped outrigger systems is proposed.

In summary, the following results were obtained:

- 1) The single damped outrigger system is efficient particularly for 1st vibration mode where natural period is shorten and damping ratio is increased independently of the damper property and the damper non-linearity, and the structural design to increase the 1st mode damping ratio as much as possible is recommended for single damped outrigger system.
- 2) The maximized 1st mode damping ratio of non-linear oil damper is over than 10%, and is decreased by the design earthquake level and the damper nonlinearity. While that of BRB is about 5.0% which is half to one-six from that of non-linear oil damper, the damping ratio is not decreased. The response reduction effect of non-linear oil damper is better than that of BRB. Nevertheless, the difference between BRB and non-linear oil damper is approximately 10 to 20%.
- 3) The optimal outrigger height ratio \square is 0.6 for the additional 1st mode damping ratio, and 0.7 to 0.9 for the peak story drift ratio, independently of the damper property, the building height and the design earthquake levels. The optimal damper amount is dependent on the target seismic responses and the seismic inputs. Nevertheless, the ductility demands of BRB to maximize 1st mode damping ratio are 8 against Level 2 waves and 15 against Level 4 waves, the plastic strain demands of BRB are 1.0% against Level 2 waves and 2.0% against Level 4 waves.
- 4) Optimal damper design equations to maximize 1st mode damping ratio considering the design earthquake levels are proposed, and are validated to a Japanese super tall building. The design examples suggest that the maximized damping performance considering a specific design earthquake level is not guaranteed against different earthquake levels. The optimized single damped outrigger system can be translated to the quad damped outrigger system where the half or quarter of the structural performance of the optimized single damped outrigger is assigned to each damped outrigger.

(2021年6月1日原稿受理, 2021年8月17日採用決定)