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In this study, a computational seismic design routine is proposed based on a
generalized response spectrum analysis for highly indeterminate structures with
energy-dissipation members, such as viscous or elasto-plastic dampers. Complex
stiffness terms are introduced to account for displacement-dependent damping,
and a three-dimensional (3-D) element stiffness matrix with complex axial stiff-
ness is proposed for elasto-plastic dampers. A modified complete quadratic com-
bination method previously developed for real symmetric damped systems is
extended to complex asymmetric damped systems, based on a theoretical analysis
of eigenvalue equations. The response is evaluated by iteratively conducting
complex eigenvalue analysis and modal combination. The accuracy is confirmed
through comparison to nonlinear response history analysis of 2-D frame models.
Finally, an example application is presented of a 3-D truss tower seismically ret-
rofitted by replacing the braces with viscoelastic and then elasto-plastic dampers.
The proposed design routine is used to rapidly identify novel and efficient damper
arrangements and sizing distributions, avoiding computationally intensive non-
linear response history analysis. [DOI: 10.1193/092217EQS188M]

INTRODUCTION

Response spectrum analysis (RSA) is a computationally efficient method to determine the
seismic response of frame structures, but as a linear method is less capable of analyzing struc-
tures with dampers, which generally require nonlinear response history analysis (NLRHA).
One technique to overcome this limitation is to employ equivalent linear damping (Jacobsen
1930), which has been applied with RSA to evaluate the response reduction effect of dampers
in passively controlled structures (e.g., Fu and Kasai 1998, Kasai et al. 2009). Equivalent
damping rules have been established for viscous, viscoelastic (VE), and elasto-plastic
(EP) energy-dissipation devices mounted in moment frames, as well as design procedures
for single- and multiple-degree-of-freedom systems (SDOF or MDOF) (e.g., JSSI 2013,
AIJ 2016). Recently, energy-dissipation devices have been applied to innovative, passively
controlled systems such as rocking frames, spine frames, and damped outrigger systems. For
each system, simplified models and design procedures have been proposed (Eatherton et al.
2014, Takeuchi et al. 2015, Huang and Takeuchi 2017). While these non-computational
design procedures are practical for design, analysis limitations make it is necessary to confirm
the final response using NLRHA, with the process iterated until a satisfactory design is
achieved. While sufficient for typical or simple cases, this is not necessarily an efficient pro-
cess for highly indeterminate structures, where an efficient damper distribution may not be
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immediately apparent. In these cases, it is useful to apply generative computational methods to
help explore the design space. However, in a fast-paced design environment, the time required
for NLRHA makes this unwieldy if a large number of analysis runs is required. Thus, it is
desirable to use RSA, but the increased damping introduced by energy dissipation devices
must be accurately modeled.

Several approximate methods to evaluate the modal damping ratios have previously been
proposed. An approximation for MDOF models that is suitable for hand calculation was
proposed by Biggs and Whitman (1970) and used in the substitute structure method (Shibata
and Mete 1976). This extended equivalent approach is adopted in the Japanese passive con-
trol design manual (JSSI 2013) for a variety of damper types. Warburton and Soni (1977)
proposed an approximate method using undamped modal analysis and a corresponding
damping matrix, which is accurate for moderately nonlinear structures. Takeuchi et al.
(2015) applied the Biggs rule to three-dimensional (3-D) structures with VE dampers
arranged as braces, and demonstrated its efficiency in combination with a genetic optimiza-
tion algorithm. However, in these methods, modal combination responses are evaluated
based on the undamped mode shapes, giving no guarantee that the results are accurate
for large equivalent damping ratios, which poses a limitation. In the previous study, the
first mode damping ratios of validation models never exceeded 7%. As one solution to
this issue, Sinha and Igusa (1995) extended the square root of the sum of squares
(SRSS) and complete quadratic combination (CQC) rules to systems with non-proportional
damping. This “modified CQC” method is particularly attractive, as it can consider phase
effects among different modes and is reasonably accurate for up to 35% viscous damping
when compared to an approximate modal analysis using undamped mode shapes. While this
method is sufficient for viscous and VE damping, it is not appropriate for displacement-
dependent damping generated from elasto-plastic devices.

In this study, EP damping is modeled using complex stiffness terms (Myclestad 1952),
which is an approach often applied when conducting modal response analysis using Fourier
transformations for other dynamics problems (Bae et al. 2014, Shirai and Inoue 2014). Complex
stiffness simulates damping using a phase lag between a real and imaginary part in the element
stiffness matrix, providing a good estimate of the effect of displacement-dependent damping.
Ishimaru and Chunhuan (2015) modeled EP dampers using complex stiffness, but used an EP
response spectrum calibrated for a specific hysteresis and the SRSS rule with absolute values of
the complex participation vectors. Greater accuracy may be obtained by extending the modified
CQC method, which was developed for real symmetric damped systems, to complex asym-
metric damped systems. For practical designs using an elastic response spectrum, both viscous
and EP damping should be considered, with the latter incorporated as complex stiffness.

The objective of this study is to develop a generic computational RSA routine that can be
applied to 3-D frame models with both viscous and EP energy-dissipation devices. This
offers the possibility of applying flexible computational optimization routines as a design
tool to generate efficient damper distributions, using the proposed RSA method for the ana-
lysis. In this study, a particular emphasis is placed on EP dampers arranged in a brace con-
figuration, e.g., buckling-restrained braces. A 3-D element stiffness matrix with complex
axial stiffness terms for EP dampers is proposed and several equivalent damping formula-
tions compared. The accuracy and limitations are then examined using NLRHA of
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2-D frames of various heights, stiffness ratios, damper arrangements, and damper yield ratios.
Finally, an example is presented applying the proposed method to a 3-D model of a truss
tower with VE and EP dampers. This is based on a structure constructed in Japan that was
previously retrofitted with buckling restrained braces (Ookouchi et al. 2005).

SUMMARY OF PREVIOUS RSA METHODS

This chapter summarizes previous RSA methods for MDOF structures with energy-
dissipation elements that are of relevance to the proposed method, including the complex
stiffness approach. Hereafter, the real symmetric mass matrix, real symmetric damping
matrix, real symmetric stiffness matrix, and complex asymmetric stiffness matrix are denoted
“M,” “C,” “K,” and “Keq,” respectively, and the corresponding systems are denoted “MK,”
MCK,” “MKeq“ or “MCKeq,” respectively.

EXTENDED EQUIVALENT LINEAR APPROACH

The equivalent modal damping ratio ξis at the ith story or member in the sth mode is cal-
culated. The equivalent modal damping ratio ξeqs in Equation 1 is obtained for the sth mode
using the weighted average of the modal elastic strain energiesWi

s (Biggs andWhitman 1970):

EQ-TARGET;temp:intralink-;e1;62;424ξeqs ¼
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This average value is equal to the equivalent damping ratio calculated from a direct sum-
mation of the elastic strain energyWs and dissipated energy Es under a steady-state response.
Therefore, Equation 1 is an extension of the original SDOF equivalent linear approach
(Jacobsen 1962). In previous work (Takeuchi et al. 2015), this approach was applied to
a truss structure with VE dampers. However, this approach assumes undamped mode shapes,
which may significantly differ from the damped mode shapes when the equivalent supple-
mental damping is large. Furthermore, the degree(s) of freedom used to compute the elastic
strain energy Ws depends on the building type, which poses a challenge for highly indeter-
minate structures.

EXTENDED MODAL COMBINATION METHOD FOR
NON-PROPORTIONAL DAMPING

Complex eigenvalue analysis is suitable for computing the exact modal damping ratios
and damped mode shapes, including phase effects. However, as indicated by Equation 2, the
decoupled modal equation obtained from the first-order simultaneous differential equations
(Foss 1958) include complex terms related to displacement and velocity. Thus, this cannot be
directly applied in a conventional RSA:

EQ-TARGET;temp:intralink-;e2;62;166i _qs � λsiqs ¼ �βsüg (2)

where iqs is the s
th complex function of the ith global DOF, λs is the s

th complex eigenvalue,
βs is the sth complex participation factor, and üg is the ground acceleration.

Sinha and Igusa (1995) proposed an approximate formula to apply complex eigenvectors
to RSA. In a real symmetric damped system (type MCK), a physical displacement ys
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associated with the sth mode is provided, and Equation 3 is assumed based on the conjugate
property. Equation 4 is obtained by substituting Equation 3 into Equation 2, and the max-
imum response is calculated from the elastic response spectrum:

EQ-TARGET;temp:intralink-;e3;41;603iqs0∕βs ¼ �λ�s iys þ i _ys (3)

EQ-TARGET;temp:intralink-;e4;41;583iÿs þ 2ξsωsi _ys þ ω2
s iys ¼ �üg, maxjysj ¼ Sdðωs,ξsÞ (4)

where * is the conjugate property, ωs is the natural circular frequency of the sth mode, and
Sd is the spectral displacement.

From a summation of Equation 3, the total modal displacement is given by Equation 5.
The absolute value for the ith DOF of the real-valued participation vector iBs and approximate
phase angle iθs is obtained from Equation 6:

EQ-TARGET;temp:intralink-;e5;41;471UðtÞ ¼ 2
Xn
s¼1

f�Reðλ�sβsiϕsÞiys þ ReðβsiϕsÞi _ysg ≈ iBsSdðωs, ξsÞ sinðωst þ iθsÞ (5)

where

EQ-TARGET;temp:intralink-;e6;41;409iBs ¼ 2jReðλ�sβsiϕsÞ∕ sinðiθsÞj, iθs ¼ tan�1ð�Reðλ�sβsiϕsÞ∕ReðβsiϕsÞÞ (6)

iϕs is the complex eigenvector value for the ith DOF of the sth mode.

The combined modal displacements response iRCQC for the ith DOF is calculated in
Equation 7 from the modal participation B, phase angle θ, modal correlation coefficient
ρ (from the original CQC method), and spectral displacement Sd. Note that this can consider
phase effects for cases involving high damping, and Equations 5 to 7 are calculated for each
DOF in the system.

EQ-TARGET;temp:intralink-;e7;41;305iRCQC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
s¼1

Xn
r¼1

iBsiBrSdsSdrcosðiθs � iθrÞρsr
s

(7)

As mentioned previously, the modified CQC method is valid for real symmetric damped
systems. In the following section, this method is extended to systems with displacement-
dependent supplementary damping, such as those with EP dampers.

RESPONSE EVALUATION FOR COMPLEX ASYMMETRIC DAMPED SYSTEM

Here, complex stiffness is used to simulate EP damping. Complex stiffness provides a
good estimate of displacement-dependent damping compared to other approaches that trans-
late elasto-plasticity into equivalent viscoelasticity, where frequency-dependent damping
affects higher-mode damping ratios. The modified CQC method is of interest, as this calcu-
lation features conjugate pairs of complex eigenvalues. In the proposed routine, a complex
asymmetric damped system (including both a real valued damping matrix C and complex
stiffness matrixKeq) is applied, iterating to obtain the complex eigenvalues and mode shapes.
Subsequently, the real valued modal and combined CQC response are evaluated using the
conjugate property and Equations 2 to 7. Note that this procedure converts the complex
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modal response to one of a real symmetric damped system, which has a defined elastic
response spectrum.

The free vibration equation for a SDOF MCKeq system is given by Equation 8:

EQ-TARGET;temp:intralink-;e8;62;597mẍþ c_xþ ðaþ ibsgnωeÞk0x ¼ 0, a > 0, b ≥ 0 (8)

where m is the mass, c is the viscous damping coefficient, k0 is the initial elastic stiffness, i is
the imaginary unit, a is the real part and b the imaginary part of the complex stiffness, and ωe

is the circular excitation frequency.

Reformulating Equation 8, the characteristic equation is obtained from Equation 9.
Neglecting repeated roots, the complex eigenvalue group is obtained from Equation 10:

EQ-TARGET;temp:intralink-;e9;62;498λ2 þ 2ξvω0λ þ ðaþ ibsgnωeÞω2
0 ¼ 0, x ¼ Aeλt (9)

EQ-TARGET;temp:intralink-;e10;62;484 λ ¼
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q
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(10)

Here

EQ-TARGET;temp:intralink-;e11;62;339ξk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ða� ξ2vÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� ξ2vÞ2 þ b2

p
2

s
(11)

ω0 is the natural circular frequency, ξv is the damping ratio (related only to viscous damping),
ξk is the damping ratio related to the complex stiffness (but including a viscous damping
component), and A is the displacement amplitude, which is an unknown.

Note that Equation 10 is a generalized eigenvalue expression, reducing to that of the
MCK system when the parameter b is set to zero, the MKeq system when damping c
is set to zero (as given in Equation 12), and the MK system when both parameter b and
damping c are set to zero:

EQ-TARGET;temp:intralink-;e12;62;195λ ¼
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(12)
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The eigenvalue distributions for the generalized and simplified systems are visualized in
Figure 1, calculated from a 3-D tower model presented later. This model includes both pro-
portional viscous damping and EP dampers that are represented as complex stiffness. In this
system, complex stiffness is a fictional expression representing displacement-dependent
damping, and sgnωe is the signum function to account for the phase lag and conjugate prop-
erty of the asymmetric damped MCK system (Figure 1a). As shown in Equation 12 and
Figure 1b, by employing the signum function, it is easy to extract each mode group for
the MKeq system due to symmetry. Modal response analysis of these simplified systems
uses both symmetric eigenvalues, including the negative real parts (e.g. Bae et al. 2014,
Shirai and Inoue 2014). However, in MCKeq systems, the axes of symmetry are dependent
on the viscous damping ξv of each mode, and some eigenvalues (related to infinite oscilla-
tions in MKeq) shift to quadrants corresponding to damped oscillations, as shown in
Figure 1c. This lack of symmetry would normally make it impossible to directly extract
the modal parameters (ξv, ξk, ω0). Nevertheless, the true damped oscillations may still be
obtained by identifying appropriate conjugate pairs, such as the pair given by the first
and third lines of Equation 10. This conjugate property is an essential feature of the modified
CQC method, and permits the modal response of MCKeq systems to be determined from a
conventional MCK elastic response spectra. In the proposed routine, the pairs mentioned
above are applied to Equations 2 to 7, with the equivalent MCK system sth mode’s natural
circular frequency ξs and modal damping ratio ωs calculated from Equation 13:

EQ-TARGET;temp:intralink-;e13;41;216ωs ¼ jλsj, ξs ¼ �ReðλsÞ∕ωs (13)

COMPLEX STIFFNESS FOR ELASTO-PLASTIC DAMPERS

ELEMENT STIFFNESS MATRIX

A central aspect of the proposed procedure is the concept that EP damping may be repre-
sented as a complex element stiffness term. The general 3-D complex stiffness matrix for a
beam-column element is presented in Equation 14. Three displacement DOFs (ux, uy, uz) and
three rotational DOFs (θx, θy, θz) are included at each end, the x direction of the local coor-
dinate system corresponds to the element axial direction, and the member is assumed to be

Figure 1. Example eigenvalue distribution, including complex stiffness: (a) Type MCK;
(b) type MKeq; and (c) type MCKeq.
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prismatic. Complex stiffness is assigned t only o the axial terms in the linear stiffness matrix
KL, with the bending terms primarily included to model non-damper elements and to avoid
numerical singularities in a 3-D model. The geometric stiffness matrix KG is constructed as a
real symmetric matrix after application of dead loads, accounting for compression softening
effects. This equivalent linearized element stiffness matrix Keq models axial yielding dam-
pers in a brace or axial configuration, but not dampers that yield in flexure. Note that the
complex stiffness terms are included only with the proposed RSA routine, but are excluded if
conducting a validation analysis using NLRHA:

EQ-TARGET;temp:intralink-;e14;62;542Keq ¼ KL þ KG ¼

0
BBBB@

kx … �kx …

..

. . .
. ..

. . .
.

�kx … kx …

..

. . .
. ..

. . .
.

1
CCCCAþ KG,kx ¼ ðaþ ibsgnωeÞ

AbE
Lb

(14)

where Ab is the section area, E is Young’s modulus, and Lb is the member length.

PARAMETER FORMULATIONS

The dotted lines in Figure 2 show the normalized bilinear load–deformation relationship
of an EP damper under steady-state response. As discussed in previous studies (e.g., Jennings
1963), the equivalent linear approach can readily accommodate any EP hysteresis rule, as
compared with the original frequency-dependent damping formulation. The complex stiff-
ness formulation can be similarly adapted to model arbitrary hysteresis rules using the coef-
ficients a and b. In this paper, three well-known formulations for the equivalent damping of
the bilinear hysteresis rule are presented, which target the same displacement A as the original
bilinear hysteresis loop, as shown in Figure 2. In these equations, μ is the ductility, p is the
ratio of post-yield to initial stiffness, and ξ 0 is the element damping ratio. The equivalent
secant stiffness ratio γK , corresponding to the maximum deformation Um and normalized
energy dissipation ratio γE, are calculated from Equation 15. In this study, p is defined

Figure 2. Normalized load–deformation relationship under a steady-state response.
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as 0.02, and the expected yield strength is defined as 225N∕mm2 assuming steel grade
LY225 (Japanese damper steel).

EQ-TARGET;temp:intralink-;e15;41;460γK ¼ 1þ pðμ� 1Þ
μ

, γE ¼ 4

π

ð1� pÞðμ� 1Þ
μ2

(15)

Table 1 presents the equivalent linearization formulations. The geometrical stiffness
method (GSM), in which the real part of the stiffness is set as the equivalent stiffness,
and where the energy dissipation under one cycle of sinusoidal excitation is equal to that
of the original hysteresis, corresponds to a traditional equivalent linear approach (Jacobsen
1962). The average damping method (ADM) corresponds to the average damping concept
proposed by Newmark and Rosenblueth (1971), which is often recommended in design man-
uals (e.g., JSSI 2013). This assigns ξ 0 as the average equivalent damping computed from a
ductility of 1 to μ, providing a better approximation of the random amplitudes experienced in
real ground motions. This produces a more conservative damping ratio than GSM, as indi-
cated by a smaller enclosed loop area in Figure 2. The dynamic stiffness method (DSM) uses
the first approximation of the Fourier series for the bilinear hysteresis proposed by Caughey
(1960). The real part of the complex stiffness is generally less than γK . This approach is
included in the Japanese design recommendations (AIJ 2016), and is used to analyze the
steady state response of seismically isolated buildings. In this study, the real valued parti-
cipation vector used to display the mode shape and evaluate modal deformations is calculated
from Equation 16:

EQ-TARGET;temp:intralink-;e16;41;214iB
0
s ¼ iBssgnReðβsiϕsÞ (16)

COMPUTATIONAL ROUTINE

The flowchart for the proposed RSA routine, which this paper refers to as “generalized
RSA” (GRSA), is outlined in Figure 3. This is intended to be applied to structural models
consisting of an elastic main structure and discrete energy-dissipation braces.

First, the initial elastic CQC displacement vector {δ0} is computed using RSA of a con-
ventional MCK system. For this stage, the vibration system includes only the proportional
damping matrix and any supplemental viscous dampers, and the complex stiffness

Table 1. List of parameter formulations for elasto-plastic bilinear hysteresis

Method series a b ξ 0 Reference

Geometrical stiffness
method (GSM)

γK γE EQ-TARGET;temp:intralink-;e16;321;600

γE
2γK

Jacobsen
(1962)

Average damping
method (ADM)

γK 2 γKh EQ-TARGET;temp:intralink-;e16;321;571

1

μ

ð
γE
2γK

Newmark
and Rosenblueth
(1971)

Dynamic stiffness
method (DSM)

1�p
π

�
cos�1

�
1� 2

μ

�
�
�
1� 2

μ

�
2
μ

ffiffiffiffiffiffiffiffiffiffiffi
μ� 1

p �
þ p γE EQ-TARGET;temp:intralink-;e16;321;535

b
2a

Caughey
(1960)
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parameters a and b are set to one and zero, respectively. Second, the combined CQC response
is calculated to determine which, if any, EP dampers have exceeded their yield displace-
ments. The complex stiffness terms are calculated from Table 1 using the initial estimate
of ductility demands for all yielding dampers. Third, the nth step CQC displacement vector
{δn} is computed using RSA of a MCKeq system. The MCKeq CQC response is then itera-
tively calculated, updating the complex stiffness terms based on the revised ductility until
displacement convergence is achieved (Equation 17). This update process is similar to the
substitute structure approach. Note that the proportional or non-proportional damping matrix
is updated using the real symmetric stiffness matrix, including only the parameter a and the
real eigenvalue analysis from the current iteration. In this study, convergence was generally
achieved within 10 iterations. Finally, the combined response is evaluated, including element
forces.

EQ-TARGET;temp:intralink-;e17;62;254j jfΔδngj � jfΔδn�1gj j < tol:, fΔδng ¼ fδng � fδn�1g (17)

Response spectra corresponding to major damping ratios may be prepared in advance,
and then adjusted to the precise modal damping ratio ξs using the damping adjustment factor
Dh, as given by Equation 18:

EQ-TARGET;temp:intralink-;e18;62;187Sdðξs,ωsÞ ¼ Dh
Saðξ0,ωsÞ

ω2
s

, Dh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αξ0
1þ αξs

s
(18)

where ξ0 is the damping ratio of the preset table close to the sth modal damping ratio,Dh is the
parameter reflecting the damping mitigation effect on seismic response (Fu and Kasai 1998),
and α is a coefficient that depends on earthquake type (JSSI 2013). In this paper, ξ0 is defined

Figure 3. Flowchart of generalized RSA routine.
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as 0.01, 0.02, 0.03, 0.05, 0.1, 0.15, 0.2, or 0.3, and α is defined as 25 or 75, depending on
whether the response is compared to a suite of artificial or real ground motions.

The standard eigenvalue problem shown in Equation 19 is applied to complex eigenvalue
analysis (Foss 1958). Note that the aim of this study is to evaluate the maximum seismic
response, and the issue of time causality that arises when applying a Fourier or Hirbert trans-
formation is neglected:

EQ-TARGET;temp:intralink-;e19;41;560

��M�1C �M�1Keq

I 0

��
λfφg
fφg

�
¼ λ

�
λfφg
fφg

�
(19)

where I is the unit matrix, 0 is the zero matrix, and fφg is the complex eigenvector.

VALIDATION

DATA SETS AND MODELING RULE

To confirm the accuracy and limitations of the GRSA routine, the calculated responses
are compared to NLRHA using an implicit method (i.e., the Newmark beta method). One
inherent limitation of GRSA is the reliance on initial coordinates, which ignores P-delta
effects. While this is not expected to have a significant effect for drifts in the range of
1%–2%, geometric nonlinearity is included in the NLRHA by updating the coordinates
related to the rotation matrix and the stiffness distribution using an updated Lagrangian incre-
mental formulation.

A parametric validation study is conducted of regular 2-D frames with buckling-
restrained braces (BRBs) used as EP dampers in single diagonal or chevron configurations.
Schematic images are shown in Figure 4, and key structural properties listed in Table 2. In the
1- to 4-story models, a distributed mass is assigned only to the roof floor to remove the effects
of higher modes. A range of yield ratios (i.e., achieved by adjusting the mass to produce
a desired spectral displacement) is considered in these models. In the 8- to 64-story
models, distributed mass is assigned to all stories in order to excite higher modes, and is

Figure 4. Schematic images of the 2-D frame models.
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adjusted so that the first natural period is equal to 0.03 times the building height (m) when
kd∕kf is 1.00. The ground motions applied include El Centro, Taft, JMA Kobe, and Hachi-
nohe, spectrally matched to fit the Level 2 design response spectrum (approximately a 500-
year event) of the Japanese building code. The initial viscous damping is set as a minimal
0.01 in the first and second modes to focus the response dependency on the EP damping,
which is of primary interest. Note that the purpose of these models is to verify the accuracy of
the proposed GRSA routine, and the maximum response is not always realistic. Conversely, a
more realistic response was targeted for the 9-story models, which are used to study the effect
of damper arrangements. This model is subjected only to the BCJ-L2 (Japanese artificial
Level 2) wave, and the initial damping ratio is set as 0.02.

For simplicity, a single beam, column, and BRB size is used, and all connections are
assumed to be rigid. The damper-to-moment frame stiffness ratio kd∕kf is varied from
0.25 to 4.00 by adjusting the number of BRBs, and is calculated according to Equation 20:

EQ-TARGET;temp:intralink-;e20;62;279kd ¼ 2
AbE
Lb

cos θb, kf ¼ nc
12EIc
L3c

(20)

where kd is the sum of the horizontal stiffness of the braces and kf of the columns at a typical
floor, nc is the number of the columns, Ic is the column moment of inertia, and Lc is the
column story height. The section area for all BRBs is set as Ab ¼ 3325mm2, assuming
a 19� 175 mm core. To concentrate the frame flexibility in the columns, the moment of
inertia of the beams is set to 1,000 times that of the columns and rigid diaphragms modeled
by setting the beam area to 1,000 times that of one column.

1-STORY FRAME MODELS

The accuracy is compared to NLRHA in Figure 5 for the 1-story models. Note that N
in Figures 5 to 11 refers to the number of analysis runs (number of unique
models � number of ground motion records). It was noted that the story drift ratio
(SDR) was consistently overestimated when using GSM equivalent damping with the
generalized RSA routine. This occurs because both the equivalent stiffness and complex

Table 2. Structural properties of 2-D frame models

Model series
No. stories
(total height)

Damper
arrangement kd∕kf

T ðsÞ
(1st mode)

Mass ratio of
1st mode

Max.
μ

1-story frame 1 (4 m) All 0.25
0.50
1.00
2.00
4.00

0.15–1.70 1.00 57.1
Low-rise frame 2 (8 m)

4 (16 m)
All

Upper half
Lower half

0.21–3.90
0.30–5.51

1.00 48.9
34.3

Middle- to high-
rise frame

8 (32 m)
16 (64 m)
32 (128 m)
64 (256 m)

All
Upper half
Lower half

0.62–2.35
1.33–4.52
2.96–8.03
6.71–13.9

0.68–0.90
0.67–0.87
0.66–0.85
0.65–0.83

8.8
9.5

10.1
9.6

9-story frame 9 (36 m) Various 1.00 1.00–1.27 0.73–0.88 3.7
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damping ratio ξ 0 begin to decrease when the ductility μ exceeds approximately 8. Such
values are unlikely to be of much practical relevance for normal design situations, but
are nevertheless included in this study for comprehensive validation. To avoid this
phenomenon, a modified GSM is used from here on, where the peak value of ξ 0 is
used when the ductility is large, and the parameter b is defined as 2 γKξ

0. The improved
accuracy is shown in Figure 5d, with the GRSA method achieving good agreement
with NLRHA for a broad range of yield ratios, as shown in Figure 5a to 5c. Although
GRSA with ADM equivalent damping is more conservative than with GSM, approxi-
mately 90% of responses have an error of −0.3 to +0.3 when using GSM, as shown
in Figure 5e to 5f.

Figure 5. Comparison of NLRHA and generalized RSA in 1-story models: (a) SDR; (b) shear
force; (c) bending moment; (d) SDR; (e) SDR; and (f) shear force.
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LOW-RISE FRAME MODELS

The accuracy of 2- and 4-story frame models is presented in Figure 6. As shown in
Figure 6a to 6c, the response evaluation (even including the phase effects) agrees well
with the NLRHA results. Moreover, Figure 6d to 6f show that either GSM or DSM is suitable
for the computational response evaluation for a low-rise building where the first mode dom-
inates, although ADM is generally recommended for conventional design procedures.

9-STORY FRAME MODELS INCLUDING VARIOUS DAMPER ARRANGEMENTS

A more realistic response considering various damper arrangements and dead loads is
presented in Figure 7. The response evaluation, including deformation shapes and member

Figure 6. Comparison of NLRHA and generalized RSA in 2- and 4-story models: (a) SDR;
(b) shear force; (c) bending moment; (d) SDR; (e) shear force; and (f) bending moment.
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forces, corresponds well with the NLRHA results, and even has good agreement for arrange-
ments producing less damping, such as the arrangement depicted in Figure 7d. In general, the
accuracy of the GSM and DSM equivalent damping methods is better than that of ADM for
the low-rise structures (≤9 stories), as shown in Figures 5 to 7.

Figure 7. Comparison of NLRHA and generalized RSA for 9-story models: (a) Case 1;
(b) Case 2; (c) Case 3; and (d) Case 4.
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MIDDLE- TO HIGH-RISE FRAME MODELS

Figure 8 shows the accuracy for mid-rise buildings. Although the GSM and DSM errors are
occasionally unconservative, approximately 80% of the responses produce member forces with
errors of −0.3 to +0.2. In contrast with the GSM and DSM methods, the error distribution for
ADM is consistently conservative, and is often more accurate than the other options.

Issues related to overall bending are often indicated in conventional design procedures
(e.g., JSSI 2013), because the simplified lumped mass models forming the basis of these
simple equations consider only shear deformations, and thus may overestimate the damper
performance. An extreme example is shown in Figure 9, in which a small column area

Figure 8. Comparison of NLRHA and generalized RSA in 8- and 16-story models. (a) SDR;
(b) shear force; (c) bending moment; (d) SDR; (e) shear force; and (f) bending moment.
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(set equal to brace area) is employed in order to intentionally excite overall bending defor-
mations, and the kd∕kf ratio set to 1.00. Because the GRSA method analyzes a frame, rather
than a simplified lumped mass model, the effect of overall bending is accurately captured.

The accuracy for the high-rise models is presented in Figures 10 and 11, with the SDR
response generally corresponding to the NLRHA results. The error distribution using the
ADM equivalent damping method is better than when using GSM or DSM due to higher
mode effects. Approximately 85% of plots using ADM have SDR errors within −0.3 to
+0.2. Member forces are occasionally overestimated or underestimated by a large margin,
especially for taller 64-story models, but, nevertheless, about 80% of responses have errors
within −0.3 to +0.1 when using ADM. Those with larger errors appear to be affected by
geometric nonlinearity, as P-delta effects are far more significant for high-rise frames as com-
pared to shorter buildings (≤16 stories). Nevertheless, this study suggests that the GRSA
provides a sufficiently accurate estimation of the displacements for high-rise buildings
with heights up to 200 m.

EXAMPLE APPLICATION TO A 3-D STRUCTURE

To illustrate the type of structures where the proposed method could be usefully
applied, an example 3-D truss tower retrofitted with VE, and then EP, dampers is presented.
This structure was constructed in Japan as a telecommunications tower and seismically
retrofitted with BRBs. The as-built EP damper arrangement and sizes are shown in
Figure 12, as well as a VE damper scheme that was previously generated using a genetic
algorithm (Takeuchi et al. 2015). The seismic input is Hachinohe EW, spectrally matched
to the Japanese Level 2 design spectrum, which is amplified according to the site ground
conditions. The dominant modes used in the generalized RSA are selected to achieve a 90%
mass ratio according to Equation 21, and α is defined as 25 in the damping response reduc-
tion equation (Equation 18).

EQ-TARGET;temp:intralink-;e21;41;142f1gTMf1g ¼ f1gTMReðUλβÞ ¼
Xr

s¼1

Ms ¼ const:, Ms ¼ 2� f1gTMReðλsβsfφsgÞ (21)

where r is the size of the mass matrix, U is the r � 2r modal matrix for the complex eigen-
vector, λ is the 2r � 2r diagonal matrix of the complex eigenvalues, and β is the vector of

Figure 9. Comparison in the specific model to be cantilever bending (input: El Centro NS).
(a) First mode shape; (b) SDR; and (c) yield ratio μ.
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the complex participation factors. Note that the conjugate pairs are alternatingly arranged in
the rows or columns of U, λ, and β.

A comparison of the GRSA and NLRHA is shown in Figure 13. For the VE model, the
error in roof displacement is +7% using the GRSA method, which is about half the +13%
error of the extended equivalent linear approach used in the original analysis. For the EP
model, the GRSA has excellent agreement with the NLRHA results, accurately tracking
the distribution and magnitude of drift of the 3-D model. The dominant modes and
modal mass ratios for the EP model are shown in Figure 14, indicating that higher
modes (i.e., the seventh and ninth modes) are predominant. This results in the ADM method

Figure 10. Comparison of NLRHA and generalized RSA for 32-story models. (a) SDR; (b) shear
force; (c) bending moment; (d) SDR; (e) shear force; and (f) bending moment.
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providing a better estimate than the GSM or DSM methods, which is consistent with the
findings for the high-rise structures.

Even for this relatively simple structure, the number of DOFs is 810. NLRHA of the EP
model took approximately 33 min to run, while the GRSAwith ADM took approximately 12 s.
A local desktop computer was used with an Intel Core i7 including six processors (3.6 GHz)
and DDR4-2400 memory (32 GB), similar to that available to design engineers. The code was
compiled and optimized using Intel Fortran, and was written by the first author using Fortran
90/95, with the exception of some numerical libraries.

Figure 11. Comparison of NLRHA and generalized RSA for 64-story models. (a) SDR; (b) shear
force; (c) bending moment; (d) SDR; (e) shear force; and (f) bending moment.
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Figure 12. Schematic image of truss tower models.

Figure 13. Comparison of the response evaluation and NLRHA results: (a) VE model and
(b) EP model.

Figure 14. Shift in mode shapes of EP model using ADM (caption: natural period, mass ratio):
(a) Initial mode shapes and (b) final complex mode shapes.
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CONCLUSIONS

In this study, a GRSA routine was developed. This method is capable of analyzing frame
models with supplementary dampers, with displacement dependent EP damping incorporated
as complex stiffness and a proposed modified CQC method, extending the work of Sinha
and Igusa (1995). The validity of the GRSA was confirmed through comparison to NLRHA.
The following conclusions can be drawn:

1. The maximum seismic response for complex asymmetric damped systems can be
evaluated using a proposed modified CQC method. This is based on the eigenvalue
expression of a SDOF model and includes both viscous and EP damping, the latter
as complex stiffness. A 3-D element matrix is proposed that includes a complex
axial stiffness term, and is confirmed to provide a good estimate of displacement-
dependent damping of brace and axial members, such as BRBs.

2. Several methods were studied for the required equivalent damping expression. A mod-
ified GSM and DSM method was found to be most accurate for structures where the
first mode is dominant. However, the ADM is consistently more conservative than other
methods, and is most accurate for structures with significant higher mode participation.

3. Numerical validation studies of 2-D frame models, which consisted of diagonal
braces and an elastic moment frame, indicated good agreement with the
NLRHA results, particularly for low- and mid-rise frames (≤16 stories). Approxi-
mately 80% of the model responses predicted the peak SDR, shear force, and bend-
ing moment with errors of −0.3 to +0.2. In contrast, the accuracy in predicting the
member forces decreased for high-rise buildings due to global P-delta effects, while
the accuracy of story drifts (SDR) was generally maintained.

4. An example of the GRSA method to a 3-D truss tower structure retrofitted with
BRBs was presented. The proposed method proved comparably accurate to
NLRHA, while requiring only a small fraction of the time.

The energy-dissipation devices discussed in this study include linear viscous, linear VE,
and EP dampers. Nonlinear viscous and nonlinear VE dampers may also be considered by
adjusting the phase when updating the damping matrix, using an equivalent linearized ele-
ment (e.g., Voigt model) and applying equivalent linear approaches for frequency-dependent
damping, which have been proposed in previous studies.
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