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 1. Introduction 

Although the performance of seismic isolation devices such as rubber bearings or dampers have been tested and evaluated through 

unidirectional input, in fact these devices are subjected to seismic ground motions in two direction. Recently the performance of 

high-damping rubber bearings under bidirectional input is found to be different from that under unidirectional input, and bidirectional 

tests for various isolation devices are being carried out. In this paper, bidirectional shaking table tests for SSB (Spherical Sliding Bearing 

/ Friction Pendulum Bearing: FPB) are conducted, and the difference of their response against unidirectional response are investigated. 

Bidirectional effects are discussed using analytical model taking these testing results into account, followed by the studies on the effects 

on the response of supported superstructures. 

 2. Bidirectional shaking table tests for a single SSB 

Bidirectional shaking table tests for a single SSB are carried out. A mass gives dead load 24.3 N/mm2 pressure on a sliding bearing 

surface of the SSB, expected friction coefficient is calculated as 0.056, and natural period after slipping is 4.5 sec. As a result, the 

maximum response displacement of the SSB under bidirectional input is larger than that under unidirectional input, and acceleration is 

same level between both inputs. These differences are considered to be caused by the bidirectional effects of friction force vector. 

 3. Response of multistory frames supported by SSB under bidirectional input 

The response obtained by the shaking table tests is compared with numerical analytical results with a friction pendulum model (FP 

model) which taking account of pendulum action and bidirectional effects of friction force vector proposed by the authors. The FP model 

well explains the difference of response under bidirectional vs. unidirectional input. The response of multistory frames supported by the 

SSB is also studied, and excitation in the displacement response and reduction in the acceleration response are observed. 

 4. The effects of hysteretic models on the bidirectional response 

In this chapter, the bidirectional response effects of the FP model and ordinary MSS model (Multiple Shear Spring) which does not 

simulate pendulum action and has different bidirectional effects of friction force vector are discussed. As a result, the bidirectional 

effects of friction force vector are significant during the post-sliding frictional stiffness decreasing. Also the effects of normal reaction 

forces are remarkable, which are not caused by the overturning response of the superstructure, but mostly by the pendulum actions. 

 5. Conclusions 

1) The maximum displacement response under bidirectional input generally becomes larger than that under unidirectional input, while 

acceleration response generally keeps independency between unidirectional and bidirectional input. These bidirectional response 

characteristics of the SSB are well explained with the FP model. 

2) In multistory frames supported by the SSB, displacement response increases in each story while acceleration response in the upper 

story decreases by additional bidirectional input compared with unidirectional input. 

3) Using a SSB with large spherical radius, the response by the MSS model differs from that by FP model. That is mainly because MSS 

model has different bidirectional effects of frictional force vector. On the other hand, the effects of nominal reaction forces become 

remarkable in the case of using SSB with small spherical radius, which is mainly caused by pendulum action. 

4) The proposed FP model including the pendulum action is considered to be more suitable for evaluate the response characteristics of 

SSB discussed above than MSS model. 
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