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A B S T R A C T

A controlled spine frame system consisting of an elastic moment frame, elastic spine frame and concentrated
yielding elements is proposed to ensure continuous usability of buildings in the event of an earthquake exceeding
the design level. Prior studies have documented the excellent performance of spine frame structures in
preventing both the concentration of damage in soft stories as well as in providing self-centering. The current
study develops a simplified design method based on equivalent dual multi-degree-of-freedom and single-degree-
of-freedom representations, discussing the effects of damper yield drift, and stiffness ratios between the elastic
moment frame, spine frame, and dampers on the structural response. This design method is validated with a
parametric study and optimal ranges of the stiffness ratios are provided.

1. Introduction

There is a high probability of large magnitude earthquakes striking
major cities in Japan, particularly along the Nankai trough [1,2].
Furthermore, the buildings in these areas may be subjected to multiple
events of design level intensity throughout their life. To aid rapid
recovery, it is essential to ensure continued usability of buildings,
particularly so for public buildings serving as post-disaster shelters or
with other critical functions, such as hospitals, schools, and gymna-
siums.

Previous studies have proposed and applied various spine systems in
both retrofit and new build applications. Z. Qu et al. [3] employed a
pivoting spine concept in the seismic retrofitting of a concrete building
in Japan. B. Janhunen et al. [4] proposed a seismic retrofit solution by
adding a single pivoting concrete spine to the center of a 14-story
building to improve the drift pattern and distributed yielding at all
levels of the building. M. Eatherton et al. [5,6] carried out a shake table
test of an uplifting steel rocking frame system with post-tensioned (PT)
strands to provide self-centering, and proposed several design concepts
for this system. J. Lai and Mahin [7] examined the Strongback system,
which combines aspects of a traditional concentric braced frame with a
stiff mast to resist the tendency of damage concentration in a single or a
few stories.

A controlled spine frame has been proposed by the authors, as
shown in Fig. 1, and applied in the design of a new five-story research
center at Tokyo Tech's Suzukakedai campus [8]. This spine frame
consists of (1) a stiff braced steel frame (i.e., spine frame), (2) replace-

able energy-dissipating members (buckling restrained columns, BRC),
and (3) envelope moment-resisting frames. The spine frame prevents
the concentration of damage. Unlike the system proposed by M.
Eatherton et al. [5,6], the envelope moment frames are designed to
remain elastic and reduce residual drifts, providing the self-centering
force without resorting to post-tensioning. The input seismic energy is
absorbed by BRCs, which feature significant cumulative deformation
capacity, and if required can easily be replaced following a large
earthquake. This combination of structural elements reduces or effec-
tively eliminates repair cost and downtime.

The spine frames and moment frames offer superior performance in
preventing damage concentration and reducing residual deformation.
However, the performance in taller structures and the effect of main
structural parameters on the seismic performance are unclear.
Additionally, an easy and reliable seismic design procedure is urgently
required to improve the system efficiency and promote the concept in
the industry. In this study, a simplified dual multi-degree-of-freedom
(DMD) model was constructed to examine the dynamic characteristics
of the spine frame structures. The DMD model proposed in this study is
expected to exhibit nonlinear behavior similar to the full model,
particularly in terms of the distribution and maximum values of story
drift and shear force. Based on this model, the optimal design of the
controlled spine frame structure was investigated, and a simple design
procedure was proposed based on an equivalent single-degree-of-free-
dom (SDOF) system. A parametric study with representative design
indices was conducted to compare the seismic responses of the DMD
and SDOF models. Optimal ranges of key system parameters and the
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applicable scope of the proposed design method was determined.

2. Analytical models for the controlled spine frames

2.1. Benchmark building structures

In order to investigate the effect of the controlled spine system, the
three benchmark buildings shown in Fig. 2 were designed as per the
Japanese building design codes [9], representing typical office build-
ings of various heights (5-story, 10-story, and 20-story). The main
frames were designed to remain elastic and the damper yield strength
taken as 325 MPa. As a simplifying design assumption, for this study the
lateral stiffness was set proportional to the story shear, as shown in
Fig. 3. However, in general, stiff spine frames provide greater latitude
in story stiffness distribution, suppressing soft story formation. Simpli-
fied dual multi-degree-of-freedom models of these benchmark struc-
tures were used to validate the simplified design methods introduced in
the following section.

2.2. Basic concepts and assumptions of the DMD model

A simplified dual multi-degree-of-freedom (DMD) model was con-
structed to clarify the key characteristics governing the response of the
controlled spine frame. The concept of the DMD model used for
studying the controlled spine frame is shown in Fig. 4, where the
elastic moment frame and controlled spine frame are idealized as two
parallel multi-degree-of-freedom (MDOF) models. The moment frame
constrains the lateral deformation of the spine frame, with the
connecting beams transferring only horizontal force, and it bears the

weight of each story, which is represented as lumped masses.

2.3. Simplification of moment frames

The MDOF representation of the moment frame is characterized by
a rotational spring representing the total flexural stiffness of the beams
at a given story, and a column element representing the stiffness of all
columns at a given story. The beam stiffness is conservatively calculated
from centerline geometry, and the following points are neglected:

(a) Axial deformation of the beams and columns
(b) Shear deformation of the beams and columns
(c) Panel zone deformation.

This model was initially proposed by M. Nakashima et al. [10]. The
original proposal assumed that the rotations of beam-column joints
were identical at a given story. In contrast, in this study, it is assumed
that the rotations of beam column connections at each story are
inversely proportional to the corresponding beam-to-column bending
stiffness ratio.

The stiffness of the rotational spring representing beams at the i-th
story is denoted by Kbi, which is calculated by summing the bending
moment at each beam-end Mbij, and dividing by the average rotation θi,
as expressed in Eq. (1). nbi is the number of beam-end at the i-th story.

∑K M θ=bi
j

n

bij i
=1

bi

(1)

The columns at the i-th story are represented by a 4 × 4 stiffness
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Fig. 1. The concept of a controlled spine frame structure.
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matrix [Kci], which is assembled by summing the stiffness matrices of
each individual column in the original frame, and expressed by Eqs. (2)
and (3):
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where, Icij is the second moment of area of the j-th column at the i-th
story. hi is the height of the i-th story. nci is the number of columns at
the i-th story.

2.4. Simplification of spine frames

The spine frame is simplified into a single continuous column by
considering both bending and shear deformation. The braces and
columns are idealized as pin-connected truss elements, which only
exhibit axial elongation and contraction. The equivalent stiffness in
bending and shear – (EI)s and (GA)s – are expressed by Eqs. (4) and (5)

[11]:

EI b EA( ) =
2s
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w
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3w

(5)

where, b denotes the width of the spine frame, A denotes the cross-
sectional area of the columns, Aw denotes the cross-sectional area of the
braces, and γ denotes the angle between the columns and braces, as
shown in Fig. 1.

The stiffness of spine frames at the i-th story considering both
bending and shear deformation is expressed as a 4 × 4 matrix, given by
Eqs. (6) and (7):
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From the equations above we can notice that there are three global
deformations at each floor of the system, namely, lateral displacement,
denoted by ui, rotation of the moment frame, denoted by θi, and
rotation of the spine frame, denoted by θis.

Finally, the BRCs are converted into a single equivalent elasto-
plastic hinge at the ground level. Bending stiffness of the column
representing spine frames at the first story is assigned with a sufficient
large value. The rotation of the elasto-plastic hinge is taken as
θd = 2ud / b, as shown in Fig. 1. Therefore, the initial stiffness of the
BRC hinge is expressed by Fdyb2 / 2udy; Fdy and udy are the yielding axial
force and deformation of each BRC.

2.5. Verification of the DMD model

The three benchmark structures introduced earlier were used to
validate the DMD model. Member-by-member (MBM) models were
built in OpenSees [12] and eigenvalue and time-history analysis were
carried out to examine the validity of the simplified representation. The
ground motions used for time history analysis included El Centro NS
(1940), JMA Kobe NS (1995), TAFT EW (1925), and Hachinohe NS
(1968), each 30 s long. The acceleration response spectra for the four
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recorded ground motions were spectrally matched to follow the
Japanese life-safety design spectrum (BRI-L2), as shown in Fig. 5.

Rayleigh damping was adopted for the DMD Model, with the
intrinsic damping ratio h0 set as 0.02 for the first and third modes, in
order to achieve a near-constant value of damping for all modes with
frequencies between these two modes.

The periods of the first three modes of DMD and MBM models are
listed in Table 1. Error for the first three periods between the DMD and
MBM models was< 1%, 5%, and 10% in the 5-story, 10-story, and 20-
story structures, respectively. Fig. 6 compares the maximum seismic
response of the three models for the DMD and MBM models. Story drift
and shear force were similar in both model representations of the 5-
story and 10-story structures, while the relatively large difference in the
20-story structure is primarily attributed to the axial deformation of
columns in the moment frame. When the axial stiffness of the columns
was considered infinite, the error in the first three periods reduced to
0.5% for each mode of each model. Therefore, the DMDmodel produces
a good estimation of drift and shear for the 5-story and 10-story
structures, but only provides the general distribution in the 20-story
structure. This model representation will be used later for comparison
with the SDOF model.

3. Design procedure using equivalent SDOF model

To develop a practical design method, the structure was further
simplified into a single-degree-of-freedom (SDOF) model. This model
neglects higher mode effects, but enables the equivalent linearization
technique to be applied [13], a direct and clear method to design the
system stiffness ratios and damper yield point and achieve optimal
response reduction. While the benchmark buildings introduced pre-
viously featured elastic moment frames, the method introduced in this
section is generalized to permit inelastic moment frames.

3.1. Equivalent SDOF model of the controlled spine frame structure

3.1.1. Simplification of the main frame without BRCs
The main frame excluding the BRCs was first simplified as a MDOF

model, and assembled into an equivalent SDOF model, as illustrated in
Fig. 7.

The equivalent mass Meqand height Heq of the SDOF model are
obtained by Eqs. (8)–(10):
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where mi denotes the total self-weight of the i-th floor, including the
self-weight of the columns and walls in the half story above and below.
δi denotes the elastic lateral displacement of the i-th floor against lateral
forces following the first mode response distribution (Ai distribution) of
the Japanese building code. Hi denotes the height from the i-th floor to
the ground level.

Relation between base shear force and equivalent story drift ratio of
the MDOF model obtained from pushover analysis with lateral forces
following the Ai distribution was utilized as the force-deformation
curve for the SDOF model. The nonlinear curve was further idealized as
a bilinear curve, matching both the shear force at 2.5% drift and area
under the curve up to 2.5% drift.

3.1.2. Stiffness and yielding drift of dampers
Generally, connection elements have a significant influence on the

effectiveness of damping devices, reducing the imposed local deforma-
tions and achieved damping for a given level of drift. For controlled
spine frame structures, the spine frame flexural stiffness reduces the
effective damper stiffness and must be accounted for. To isolate the
spine frame stiffness in the member-by-member model, pushover
analysis is first conducted with the dampers substituted with rigid
elements (Fig. 8 (a)) and secondly with the dampers removed (Fig. 8
(b)). Thus, the stiffness of the spine frame Kc can be isolated from the
frame Kf by subtracting the results of the first pushover analysis
(Kc + Kf) from the second Kf.
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Table 1
Difference in the periods of the first three modes as predicted by the MBM and DMD
models.

Models Mode MBM DMD Difference

5-Story 1 0.716 0.713 −0.4%
2 0.180 0.180 0.3%
3 0.096 0.096 −0.3%

10-Story 1 1.359 1.379 1.4%
2 0.387 0.402 4.1%
3 0.196 0.204 4.1%

20-Story 1 3.299 3.017 −8.6%
2 0.927 0.929 0.2%
3 0.461 0.481 4.5%
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Next, the local damper stiffness is calculated from Eqs. (11)–(14).
The first story yield drift ratio, θdy, for now neglecting the brace shear
deformation, is given by:

θ u b= 2dy dy (11)

The overturning moment at the bottom of the spine frame, denoted
by Mdy, is as follows:

M F b= ⋅dy dy (12)

The spine frame base shear, denoted by Qdy, assumes that the first-
mode response is dominant and is expressed as:

Q
M
H

=dy
dy

eq (13)

Finally, the horizontal stiffness of the BRCs, denoted by Kd, is
calculated from Eq. (14):

K
Q

θ H
=d
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dy eq (14)

where, udy and Fdy represent the axial yield deformation and force of
each BRC, b represents the width of the spine frame, as shown in Fig. 9.

Fig. 8 (d) shows the full structural system, with the damper stiffness
expressed by Eq. (15), including the flexural deformation of the spine
frame:
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3.2. Evaluation of equivalent damping ratio

For a given maximum story drift ratio θt, the equivalent damping
ratio heq′ can be evaluated from the strain energy and dissipated energy
of the main frame and dampers, expressed by Eq. (16) and Fig. 10.

Iteration is required as damping is a function of drift, which in turn
is a function of damping.

h h
E E

π E E
′ = +

+
4 ( + )

eq
fp ap

fe ae
0

(16)

where, h0 is the intrinsic viscous damping ratio; Efp and Eap represent
the hysteretic energy of the main frame and BRCs, respectively, and Efe
and Eae represent the equivalent elastic strain energy. The equivalent
damping ratio heq of the system is calculated using Eq. (17), using an
integration method originally proposed by Newmark and Rosenblueth,
and described by K. Kasai et al. [14].
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Equivalent damping at various yielding stages is expressed by Eqs.
(18) and (19):
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where, Kfh denote the stiffness of the main frame after yielding,
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The equivalent period Teq can be evaluated from the secant stiffness
Keq at maximum drift θt, given by Eqs. (20) and (21):

If μf ≤ 1 and μa > 1, then
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1 +eq f
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where Tf is the elastic period of the main frame.

3.3. Evaluation of peak deformation and force response

The displacement response reduction factor can be expressed by Eq.
(22).
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The response reduction effect due to damping is given by Eq. (23)
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where α is an empirical value, set as α= 25.
The period shift effect can by simplified using the approach

proposed by K. Kasai et al. [14] and is given by Eq. (24)
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The direct function for various portions of the response spectrum of
the displacement reduction factor Rd is simplified to Eq. (25):
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where the period of the elastic components T T=f a f
K

K K+ +
f

f a
(≥0.16 s

in this paper), and the constant spectral velocity region starts at
Tl = 0.864 s. Drift ratio is then obtained from Eq. (26), with the
updated ductility ratio used to recalculate heq using Eqs. (18) and
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Fig. 9. An illustration of the BRCs in a spine frame.
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(19), iterating until convergence is achieved.

θ R θ= d t
(0) (26)

The resultant force is given by Eqs. (27)–(28), evaluated by equating
the displacement and acceleration reduction response factors:

⎛
⎝⎜

⎞
⎠⎟R R

T
T

=a d
f

eq

2

(27)

Q R Q= a
(0) (28)

From Sections 3.2–3.3, the displacement reduction factor, denoted
by Rd, is determined from the target story drift ratio, denoted by θt, the
stiffness ratio of dampers and main frame, denoted by q, and the
ductility factor of the dampers, denoted by μa, as shown in Eq. (19).
Fig. 11 shows the relation between Ra and Rd for the five-story
benchmark building with a nonlinear main frame. These curves are
referred to as performance curves and as they are normalized, can be
prepared as a generic design aid.

3.4. Simple design procedure using SDOF model

Following from the response reduction equations detailed above, a
simple design procedure for the controlled spine frame using the SDOF
model is proposed:

(a) Design the main frame for the target drift level without dampers
(BRCs)

(b) Evaluate the elastic displacement and force response of the main
frame by the response spectrum, and then calculate the displace-
ment and force reduction factors compared to the performance
targets.

(c) Select the ductility μa/μf and stiffness ratio Ka/Kf from the perfor-
mance curve that satisfy the target drift ratio and acceleration
response.

(d) Design the dampers for the selected ductility and stiffness, and
confirm the final overall response using the equivalent linearization
technique. Validate results with time-history analysis as required.

3.5. Verification of the SDOF model

The 5-, 10- and 20-story benchmark models from Section 2 were
evaluated using the SDOF model, with a comparison to the DMD model
shown in Fig. 6. Good agreement was achieved for the low-rise
structures, but the error became notable for the 20-story structure.
This is mainly due to the effect of the higher-modes response on the
spine frame. The following section discusses the optimal design
parameters and the applicable range of the SDOF model.
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Fig. 11. Performance curve of the five-story building with a nonlinear main frame.

Table 2
Various stiffnesses of the controlled spine frame structure.

(a) Original stiffness of each component calculated from member sectional size

Story H (mm) (EI)s
(kN·mm2)

(GA)s (kN) (EI/h)c1
(kN·mm)

(EI/l)b1
(kN·mm)

5 2 × 104 4.09 × 1014 5.55 × 106 2.36 × 1010 1.59 × 1010

10 4 × 104 4.09 × 1014 5.55 × 106 3.50 × 1010 1.51 × 1010

20 8 × 104 4.09 × 1014 5.55 × 106 2.03 × 1011 1.62 × 1010

(b). Representative stiffness of each component for the DMD model obtained from
calculations for each story level (Heq/H= 0.73)

Story Ksb (kN/
mm)

Kss (kN/mm) Ks (kN/mm) Kf (kN/mm) Kd (kN/mm)

5 153.4 277.5 98.8 140.7 174.0
10 19.2 138.7 16.8 75.1 170.3
20 2.4 69.4 2.3 39.0 42.6

(c) Stiffness of each component obtained from a pushover analysis with lateral forces
following the first-mode distribution

Story Kf (kN/
mm)

Heq/H (mm) Kd (kN/mm) Ka (kN/mm) Kc (kN/mm)

5 181.6 0.76 160.5 94.8 261.6
10 95.5 0.72 175.1 39.2 52.9
20 61.2 0.70 46.3 4.7 6.5

(d). Normalized stiffness obtained from the representative stiffness for the DMD
model

Story Kd / Kf Ks / Kf θdy

5 1.24 0.702 0.11%
10 2.27 0.224 0.11%
20 1.09 0.059 0.11%
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Fig. 12. Definition of representative stiffness for each component.
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4. Parametric study of controlled spine frame structures

4.1. Control parameters

A parametric study was conducted to investigate the structural
characteristics of the controlled spine frame, varying the stiffness of the
spine frame, moment frame, and BRCs, as well as the BRC yielding drift.

In order to simplify the parametric study, the equivalent stiffness
parameter for each component is given by Eqs. (29)–(30), rather than
the accurate stiffness developed for the DMD model in Section 2. The
lateral stiffness of the spine frame is defined in Eq. (29) as a function of
the bending stiffness Ksb and shear stiffness Kss:

K EI
H

K GA
H

K= 3( ) , = ( ) , = 1
+

sb
s

ss
s

s

K K
3 1 1

ss sb (29)

Note that Ks is different from Kc in Fig. 8 due to different constraint
conditions. It is suggested to use Ks in the primary design and Kc in the
final detailed design for the spine frame.

The lateral stiffness of the moment frame is given by:

( )
K = 12

∑ +
f

i

N
h

EI h
h

EI l
=1

( ) ( )
i

ci
i

bi

2 2

(30)

Also note that the Kf herein slightly differs from Kf in Fig. 8 because
of the simplified constraint conditions.

The lateral stiffness of BRC hinge is Kd calculated from Eq. (14) with
Heq/H as 0.73.

Here, H represents the structural height, (EI/h)ci and (EI/l)bi
represent the sum of the line stiffness of the columns and beams at
the i-th story. The stiffness of each component of the three benchmark
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structures is listed in Table 2, referring to Fig. 12.
The response of a controlled spine frame can be characterized by the

normalized damper-to-moment frame stiffness ratio, denoted by Kd/Kf,
and spine-to-moment frame stiffness ratio, denoted by Ks/Kf. These are

summarized in Table 2 (d). The range investigated in this study was
selected to represent realistic code-compliant and buildable structures.
Namely, Kd/Kf ranged from 0.5 to 8.0, and Ks/Kf ranged from 0.05 to
2.0. The specific values selected for the 5-story structure are listed in
Table 3 as an example.

4.2. Optimal design using design indices

The parametric study was used to validate the proposed simplified
SDOF model against the DMD model, examine the response trends and
influence of the various control parameters, and finally to optimize the
stiffness ratios Kd/Kf and Ks/Kf. Applying the seismic input shown in
Fig. 5, the peak story drift ratio and shear force as a function of Kd/Kf

are shown in Figs. 13 and 14. Generally, the simplified SDOF method
slightly overestimates the base shear and maximum story drift ratios.

As illustrated in Fig. 13 for the 5-story structure, increasing Kd/Kf

results in decreasing deformations and shear forces for the simplified
SDOF method. Generally, the base shear of the DMD and SDOF models
are in good agreement when Kd/Kf ≤ 1.0. For exceptionally large
dampers with Kd/Kf in the range of 2.0–4.0, a significant discrepancy
was observed with respect to the deformations between SDOF and DMD
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methods. This is mainly because the SDOF models assume a post-yield
response distribution, thus the SDOF model provides better estimation
for structures developing into sufficient plasticity, or structures in
which the response distribution doesn't change much after the yielding
mechanism occurs. Therefore, it is recommended that Kd/Kf should
be< 2.0 when the SDOF method is applied. Additionally, at least a
reasonable damper stiffness of Kd/Kf ≥ 0.05 should be provided to
effectively control the seismic response.

A similar trend for Kd/Kf could be observed in the results of the 10-
story and 20-story structures, as shown in Fig. 14. In Fig. 14 (b-1) and
(b-2), the story drift ratios of the DMD and SDOF models generally
agree when Kd/Kf is< 1.0. The shear force of the DMD model exceeded
that of the SDOF model in the 20-story structure, except for the case
when Kd/Kf = 2.0. This indicates that the SDOF model is not suitable
for tall buildings with significant higher-mode effects.

Fig. 15 demonstrates the effect of the spine-to-moment frame
stiffness ratio Ks/Kf on the seismic response of the 5-story, 10-story,
and 20-story structures, with the other parameters held constant at Kd/
Kf = 1, and θdy = 0.1%. As observed in Fig. 15 (a), base shear is
relatively independent of Ks/Kf. However, the shear force obtained by
using the DMD model in Fig. 15 (a-3) exhibited significant fluctuations
in the 20-story structures. These fluctuations in the higher structures
are attributed to the higher-mode effect. As shown in Fig. 15 (c),
concentration of SDR (that is, the maximum SDR divided by the average
SDR among all the stories) decreased rapidly when Ks/Kf increased from
0 to 0.5 in all the three structures, and continued to rapidly decrease
when Ks/Kf increased to 1.5 in the 5-story structure. Thus, higher Ks/Kf

is strongly associated with a more uniform SDR distribution.
For the full range of Ks/Kf, the proposed simplified evaluation

method is able to predict the seismic performance within an acceptable
margin for both the deformation and force response of the 5-story and
10-story structures, and deformation response of the 20-story structure.
However, increasing Ks/Kf cannot eliminate the higher-mode effect on
shear forces, and so the simplified procedure cannot accurately predict
the force response of the 20-story structure.

Fig. 16 compares the peak shear force and story drift ratio of the
DMD models with those of the SDOF models for Kd/Kf of 0.5–2.0 and
Ks/Kf of 0.05–2.0 in 5-story and 10-story structures. Generally, the
proposed design procedure slightly overestimates the base shear and
maximum story drift ratios, with the one exception being that base
shear of the taller 10-story structures was underestimated. General
trends are captured, and error is controlled to within approximately
20% for the base shear and 30% for the maximum story drift ratios.

Equivalent mass and shear force for each mode were calculated in
order to examine the minimum first mode participation factor required
for the single first mode response to be considerate sufficiently
representative of the overall response. With respect to the 5-story
structure, the first modal contribution factor for shear force was always
higher than 83% and the response in all the cases was dominated by the

first-mode. With respect to the 10-story and 20-story structures, the first
modal contribution factor for shear force could only reach 76% and
59% even when Ks/Kf = 12.0, which is unrealistic large in actual
application. This indicates that the accuracy of the SDOF method
gradually decreases as the structure height increases due to the effects
of the higher modes.

5. Conclusions

In this study, a seismic design and evaluation method has been
proposed for the structural system with controlled spine frames. A
parametric study was conducted to examine suitable values for key
structural parameters. The following conclusions were drawn from this
study:

(1) A graphical performance curve has been proposed to efficiently
select the damper yield drift and damper-to-frame stiffness ratio Kd/
Kf. This is a practical method to quickly arrive at optimal designs
that achieve the force and deformation performance targets. The
optimal stiffness Kd/Kf ratio typically falls between 0.5 and 2.0.

(2) The stiff spine frame has a dramatic effective in achieving a more
uniform deformation distribution along the height of a structure. To
ensure the effectiveness of the dampers, Ks/Kf should exceed 0.5.

(3) Increasingly stiff dampers lead to a more significant difference
between the SDOF models and the DMD models. It is recommended
that the spine-to-moment frame stiffness ratio Kd/Kf should not
exceed 2.0 for the typical case of 0.5≤ Ks/Kf ≤ 2.0 for using the
SDOF models.

(4) The proposed simplified design procedure based on the SDOF
model is valid for structures in which the first modal contribution
factor for shear force exceeds 80%. This corresponds to ordinary
spine frame structures not taller than 10 stories and spine-to-
moment frame stiffness ratios Ks/Kf of 0.5 to 2.0.

Abbreviations

DMD simplified dual MDOF model for controlled spine frame str-
uctures

SDR story drift ratio
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