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Outriggers are a proven and effective system used to reduce the dynamic
response of tall buildings. By inserting dampers into the outriggers, providing sup-
plementary energy dissipation, further improvements in the dynamic response can
be achieved. The aim of this study is to develop analytical methods for the dynamic
response evaluation of a single-damped-outrigger system and determine the opti-
mal outrigger locations and damper sizes to minimize response. Changes in the
mode shape, damping, natural period and seismic response were studied parame-
trically using complex eigenvalue analysis of a continuous cantilever model, and
the accuracy verified by comparison with a member-by-member model. A simpli-
fied single-degree-of-freedom model was then constructed and studied using an
assumed lateral displacement curve and the principle of virtual work. Finally, a
practical method for determining optimal outrigger location and damper size
based on this simplified model was proposed. [DOI: 10.1193/051816EQS082M]

INTRODUCTION

Outriggers are widely used around the world in many high-rise building structures
(Lu et al. 2007, Ali et al. 2007). Traditionally, an outrigger is introduced to rigidly connect
the core to a perimeter frame, improving the lateral stiffness of the overall structural system and
reducing the dynamic response. However, it has been pointed out that it is difficult to design
and detail conventional outrigger due to local stress concentrations at the outrigger-structure
connection, and consequently the cost of the outrigger floor is high (Viise et al. 2014).

An efficient approach to overcome this difficulty is to use damping rather than stiff-
ness to mitigate the dynamic response, replacing the rigid outrigger connection with
supplementary energy-dissipation devices. This is called the damped-outrigger system.
A 60-story twin tower structure in Manila employing an outrigger with fluid-viscous
dampers was completed in 2009, demonstrating the effectiveness of dampers in reducing
the overturning moment, base shear and accelerations resulting from dynamic actions
(Willford et al. 2008, Smith et al. 2007). Analytical, numerical, and experimental studies
have also been conducted to demonstrate the damped-outrigger’s seismic response redu-
cing capacity (Tan et al. 2012). However, practical methods for finding the optimal
damped-outrigger location and damper size has been limited to manual trial and error
or brute force approaches, which lack a theoretical basis and are less efficient than a
direct analytical method.
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Previous attempts have been made to develop an analytical model capable of accurately
estimating the damping of the single-damped-outrigger system, but these have not been vali-
dated against a range of building heights and are too complex for practical use. Chen et al.
(2010) obtained the complex mode shapes and eigenvalues for a continuous cantilever beam
with a damped outrigger by solving the free vibration partial differential equation of motion,
and proposed a method to approximately determine the optimal first-mode damping ratio and
damper size (Chen et al. 2010). Tan et al. (2014) used the dynamic stiffness method to inves-
tigate the effect of damper size and outrigger location on the mode damping ratio. Other
approaches to evaluate mode damping based on the principle of virtual work have also
been applied (Chen et al. 2009, Jeremiah 2006). Further relevant studies using the continuous
cantilever model can be found in beam vibration control theory from the applied mechanics
field (Wu et al. 1998, 1999; Laura et al. 1977). These methods require validation against a
range of building heights and further simplification to be of practical use.

This paper develops a complex eigenvalue analysis (CEA) method to obtain complex
mode shapes, damping ratios and periods for three single-damped-outrigger models with
varying heights, taking into account higher modes. This method is validated by comparing
the seismic response, including peak lateral displacement and story drift, to corresponding
member-by-member (MBM) models. Following a parametric study using this CEA
method, a simplified single-degree-of-freedom (SDOF) method is proposed to approxi-
mately evaluate the dynamic response of the single-damped-outrigger system, and deter-
mine the optimal outrigger location and damper size. The proposed optimal design method
is supposed to be able to help avoid trial-and-error studies in conventional outrigger design
process.

COMPLEX EIGENVALUE ANALYSIS

The damped-outrigger system can be simplified as a continuous cantilever (RC core) with
a nonlinear rotational spring (damped-outrigger plus perimeter columns) at the outrigger
floor, as shown in Figure 1. The bending stiffness of beams and slabs on non-outrigger floors
is neglected.

In this figure, MBM refers to a member-by-member stick model constructed in OpenSees
(Mazzoni et al. 2009) and used for validation, and CEA refers to complex eigenvalue analysis
of an equivalent continuous cantilever model. kt is the lateral stiffness of an outrigger truss, lt
is the length of an outrigger truss, kc is the axial stiffness of column, cd is the damping coef-
ficient (damper size), EIc is the bending stiffness of the RC core, mc is the distributed mass
along the RC core, kr is the equivalent rotational stiffness of the cantilever truss, damper and
perimeter columns, and yðx, tÞ is the physical lateral deformation curve of the building. The
total height of the building is h, and the outrigger is located at αh.

The free vibration equation of motion for a continuous cantilever with a concentrated
rotational spring at the outrigger floor is given by Equation 1, with the origin point
taken as the floor where the outrigger is located:

EQ-TARGET;temp:intralink-;e1;41;129EIc
∂4yðx, tÞ
∂x4

þ mc
∂2yðx, tÞ

∂t2
þ ∂qðx, tÞ

∂x
¼ 0, qðx, tÞ ¼ � ∂yðx, tÞ

∂x
krδðxÞ (1)
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where qðx, tÞ stands for the resisting moment contribution of the column, damper and out-
rigger truss, and δðxÞ ð¼ þ∞ for x ¼ 0, 0 for x ≠ 0Þ is the Dirac delta function. Also, kr is
given by Equation 2 (online Appendix A):

EQ-TARGET;temp:intralink-;e2;62;406kr ¼
2kbl2t ωcdi
kb þ ωcdi

, k�1
b ¼ k�1

t þ
�
kc
α

��1

(2)

Represents the rotation stiffness of the nonlinear rotational spring as shown in Figure 1,
and ω is the circular frequency. The physical lateral deformation curve has the form of
yðx, tÞ ¼ YðxÞeiωt, with normalized values Ȳðx̄Þ ¼ YðxÞ∕h and x̄ ¼ x∕h introduced for math-
ematical convenience. Equation 1 results in an ordinary differential equation with the general
solution (Appendix B):

EQ-TARGET;temp:intralink-;e3;62;296 Ȳ ¼ C1

1

λ
eλx̄ þ C2 cos λx̄þ C3ðe�λx̄ þ eλx̄Þ

þ C4ðsin λx̄� eλx̄Þ þ C1cðcosh λx̄� cos λx̄ÞHðx̄Þ ð3Þ

The Heaviside step function, Hðx̄Þ, is used to describe the different lateral displace-
ment curves below and above the outrigger. The boundary conditions for Equation 3 are
taken as:

EQ-TARGET;temp:intralink-;e4;62;199Ȳð�αÞ ¼ 0, Ȳ 0ð�αÞ ¼ 0, Ȳ 00ð1� αÞ ¼ 0, Ȳ ð3Þð1� αÞ ¼ 0 (4)

Substituting Equation 3 into Equation 4, the boundary condition matrix is obtained
by:

EQ-TARGET;temp:intralink-;e5;62;139½Bou:�fCg ¼ 0, fCg ¼ fC1,C2,C3,C4gT (5)

Figure 1. Damped-outrigger continuous cantilever model.
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Using the nontrivial solution condition detðBou:Þ ¼ 0, one finally gets the transcendental
equation containing the complex eigenvalue λ with λ ≠ 0:
EQ-TARGET;temp:intralink-;e6;41;615

cλ½2 coshðαλÞ � coshðλ� αλÞ � sin λ

þ 2 coshðαλÞ sinðαλÞ � 2 coshðλ� αλÞ sinðλ� αλÞ
þ cos λ sinh λþ cosðλ� 2αλÞ sinh λ

þ 2 cosðαλÞ sinh ðαλÞ � 2 cosðλ� αλÞ sinh ðλ� αλÞ�
þ 2ðcos λ cosh λþ 1Þ ¼ 0 ð6Þ

where:

EQ-TARGET;temp:intralink-;e7;41;498λ4 ¼ mcω
2h4

EIc
, c ¼ kbl2t cdi

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcEIcðkb þ ωcdiÞ

p (7)

ω in Equation 7 is the circular frequency of system with damper, (It was assumed
with frequency of corresponding system without damper here for calculation.) Equation 6
can be solved by iteration when parameter α and c are given. The solution
fλg ¼ fλ1, λ2,…, λng of Equation 6 is called the complex eigenvalue vector, and for the
ith mode’s eigenvalue λi, the mode damping ratio ξi is calculated by Equation 8, referring
to Equation 7 for the dimensionless parameter λ. By substituting λi into Equation 3 the
shape of the ith mode can also be obtained. Note that the continuous deformation curve pro-
duced by Equation 3 needs to be discretized at each floor when conducting mode superposition
in latter sections:

EQ-TARGET;temp:intralink-;e8;41;341ξj ¼ �Reðiλj2Þ∕j iλj2 j (8)

Solving the equivalent continuous cantilever model in Figure 1 with this approach is
called the complex eigenvalue analysis method (CEA) hereafter.

COMPARISON ANALYSIS OF MBM MODELS AND CEA MODELS

MBM MODELS AND MODE SUPERPOSITION METHOD

Planar MBMmodels were constructed using OpenSees for three different outrigger frame
buildings of varying heights with RC shear walls and perimeter frames. These are labeled
according to the number of stories as the 16F model, 32F model, and 64F model and are
shown in Figure 2. A parametric study was then conducted, varying the damped outrigger
floor location and damper sizes and is summarized in Table 1. Seismic ground motions used
for the time history analysis include BCJ-L2 (Japanese artificial Level 2 wave), El Centro,
Hachinohe, JMA Kobe, and Taft, the last four waves were spectrally matched to fit the Level
2 (approximately 500-year event) design response spectrum of the Japanese building code.
The peak lateral displacements and story drifts of each model were recorded to evaluate the
effects of outrigger location and damper size. All structural members were assumed to remain
elastic, and a conventional rigid outrigger was used as a control, modeled with an infinitely
large damper as shown in Table 1. The normalized parameters of outrigger stiffness Str and
damping Rat will be explained later.
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Mode responses of peak lateral displacement and story drift were combined using the
SRSS method and mode damping ratio ξi, and the complex mode shapes then calculated
from the CEA models.

BASIC STRUCTURAL PARAMETERS

Mode Shapes

Figure 3 shows the first four mode shapes of the 32F CEA models for the case of the
outrigger located at the 19th story. The changes due to damper size of the fourth mode shape
are listed in Table 1. ReðφjÞ and ImðφjÞ represent the real and imaginary part of jth mode
shape, which is complex due to the non-proportional damping provided by the damped-
outrigger. The imaginary component is affected by damping and is generally less than
the contribution of the real portion of the mode shape. However, for highly damped struc-
tures, the relative contribution increases. Furthermore, the bending resistance of the damped
outrigger causes a discontinuity of curvature in the imaginary mode shape, which becomes
more pronounced in the overall mode shape as the damping and hence relative contribution of

Figure 2. Schematic for the MBM model and outrigger frame building plan.

Table 1. Basic information about three types of MBM models

Model series Height Period
Damper sizes
(kN · sec/mm)

Outrigger loc.
(Floor no.) Str Rat

16F 64 m
1st 2.0 s 5, 10, 15, 35, 55,

75, 125, ∞ 3, 6, 8, 11, 14, 16 1.01 0.15–3.852nd 0.35 s

32F 128 m
1st 4.2 s 7.5, 15, 35, 55,

75, 125, 175, ∞
3, 6, 13, 19, 26,

32 0.46 0.15–3.572nd 0.6 s

64F 256 m
1st 7.1 s 15, 35, 55, 75,

125, 175, 225, ∞
6, 12, 18, 24, 30,
36, 42, 48, 54, 60 0.22 0.22–3.232nd 1.1 s

DYNAMIC RESPONSE EVALUATIONOF DAMPED-OUTRIGGER SYSTEMSWITH VARIOUS HEIGHTS 669



the imaginary component increases. jφj j and jφj jmax
represent the mode shape and max-

imum amplitude, and arg ¼ arctan½ImðφjÞ∕ReðφjÞ� stands for the phase difference between
the real and imaginary components. The mode shapes were calculated using Equations 3–8.
Also, the phase angle shown in Figure 3 is equal to either 0 or �π, and inverts at the mode
shape anti-nodes, which suggests geometrical similarity between the real and imaginary
components.

Natural Periods and Damping Ratios

Figure 4 shows how the first two natural periods change with outrigger location. MBM
models results give several values because of being obtained from the response against dif-
ferent seismic inputs. Generally, the change in period and damping follows a similar trend,
and the CEA model can provide a good estimate for both the first- and second modes’
periods.

Figure 3. First four mode shapes for 32F models. Outrigger location = 19F.

Figure 4. First two modes’ periods in 16F, 32F, and 64F models; MBM models’ periods were
obtained from each input seismic wave. (damper size fixed).
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Figure 5 shows the variation of the first four mode damping ratios with outrigger location
for the 32F and 64F CEA models, assuming a fixed damper size and damping calculated
using Equation 8. The achieved damping is strongly correlated to mode shape, with locations
corresponding to a mode shape’s anti-nodes producing no relative vertical displacement and
so resulting in no damping for that mode.

For the MBM model, damping can be calculated by the half-power method. Figure 6
shows the damping ratio as outrigger location is varied. The predicted damping was accurate
for the first mode, but the CEA modes tended to overestimate the higher mode damping. This
is because of higher mode shape error of CEA model in lower structures. However, given
first-mode component is dominant as discussed later, the effects to the response, the optimal
outrigger location and damper size is limited.

Figure 5. First four mode damping ratios varying with outrigger locations of 32F and 64F CEA
models.

Figure 6. First two mode damping ratios in 16F, 32F, and 64F models (damper size fixed).
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Comparing Figure 6 with Figure 4, the period changes little with outrigger location and
damper size, while the change in damping is significant. Therefore, the effect of damping is
more effective than the period shift effect in reducing the structural response.

SEISMIC RESPONSES COMPARISON BETWEEN MBM AND CEA MODELS

Peak Lateral Displacement and Story Drift

Figure 7 and Figure 8 compare the peak lateral displacement and story drift calculated for
a typical case using the MBM and CEAmodels. As a baseline, the response of a conventional
outrigger (cd ¼ ∞) MBM model is also shown. In the story drift in Figure 7, a large dis-
continuity of curvature in story drift is observed at the outrigger floor of the conventional
model, indicating that significant energy is being transferred to other floors. However, the
damped-outrigger does not feature this discontinuity and mitigates the overall response as the
primary energy dissipation member.

Figure 8a shows that, in all three cases, the CEA and MBM models produced similar
results although some bias are observed because of higher mode effects. This figure also
reveals that there were no obvious differences in accuracy between the 16F, 32F, and
64F CEA models. Figure 8a also shows that the lateral displacement and story drift are
reduced when using a damped-outrigger in comparison with a conventional outrigger
(cd ¼ ∞, solid icon).

Peak lateral displacement and story drift obtained for the first mode was also compared
with the MBM model results, as shown in Figure 8b. Generally, calculating story drift using
only the first mode slightly shifts to underestimate sides in the seismic response and increases
errors by 10%, as this neglects the contribution of higher modes. However, their range of
varieties is not largely changed from those with using the four modes, which means the first
mode is still dominant for the response.

Figure 7. Comparison of peak lateral displacement and story drift of SDOF, CEA, and MBM
models.
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Influence of Outrigger Location and Damper Size on Seismic Response

Figure 9 and Figure 10 show the effect of outrigger location and damper size on the total
displacement. The solid lines represent the CEAmodels (combining the first four modes) and
the dash lines the MBM models. The MBM and CEA models have reasonably good agree-
ment at each building height.

As the outrigger is moved up in the building, the seismic response first decreases, reaches
a minimum, and the increases as shown in Figure 9. The outrigger locations achieving the
smallest lateral displacement are between mid-height and the top floor in all cases. The con-
vex shape of the response curves suggests that there is an optimal outrigger location and
damper size that can achieve the best performance. A method for determining this optimal
configuration is of great practical interest and will be the focus of later sections. The influence
of outrigger location and damper size on story drift is similar as lateral displacement.

While the complex eigenvalue analysis (CEA) is approximate, solving the transcenden-
tal equations in Equation 6) is difficult and this limits the method’s utility in practical use.

Figure 8. Maximum seismic responses comparison.
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Figure 9. Outrigger location’s influence on maximum seismic responses in 16F, 32F, and 64F
models.

Figure 10. Damper size’s influence on maximum seismic responses in 16F, 32F, and 64F
models.
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Also noting the dominance of the first mode, critical factors in determining the single-
damped-outrigger response are the (1) first-mode shape, (2) first-mode damping ratio,
and (3) first-mode period. A simplified method derived from the principle of virtual
work using a SDOF model which can properly calculate the mentioned three factors is
introduced in the following section.

SIMPLIFIED RESPONSES EVALUATION AND OPTIMAL DESIGN METHOD

SDOF MODEL

An approximate response evaluation and optimal design method is developed based on
the principle of virtual work and the assumed displacement curve shown in Figure 11. Ỹ1 is
the displacement below the outrigger, denoted by segment AB, and Ỹ2 the displacement
above the outrigger, denoted by segment BC. Fseis: is the virtual seismic force applied at
the top of the building, and Mseis: is the seismic moment generated at the outrigger location.
Other parameters are defined in Figure 1. This simplified model is referred to as the single-
degree-of-freedom (SDOF) model hereafter.

The physical displacement curve is assumed to be yðx, tÞ ¼ YðxÞqðtÞ. In free vibration,
the work done by inertia force (δWm) and internal force (δWi) under a virtual displacement
increment δ y should be the same, so that after some simple manipulation, the equation of
motion for the equivalent SDOF system is:

EQ-TARGET;temp:intralink-;e9;62;388M̄ q̈þK̄q ¼ 0 (9)

where M̄ and K̄ are the equivalent mass and complex stiffness:

EQ-TARGET;temp:intralink-;e10;62;344M̄ ¼ m
ð
h

0

Y2ðxÞdx, K̄ ¼ EIc

ð
h

0
Y 00ðxÞ2dxþ krY 0ðαhÞ2 (10)

The equivalent circular frequency ω̄ can then be expressed as:

EQ-TARGET;temp:intralink-;e11;62;287ω̄2 ¼ K̄
M̄

, iω̄ ¼ �ξ̄ ω̃þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ̄2ω̃

q
(11)

Figure 11. Simplified SDOF model and assumed displacement curve.
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where ω̃ is the non-damped circular frequency. As a result, the damped system’s circular
frequency ωD, period TD and damping ratio ξ̄ can be expressed as:

EQ-TARGET;temp:intralink-;e12;41;615ωD ¼ Imðiω̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ̄2

q
ω̃, TD ¼ 2π

ωD
, ξ̄ ¼ �Reðiω̄Þ

j iω̄ j (12)

Displacement Curve

The displacement curve was obtained by assuming a concentrated seismic force Fseis: is
applied at the top floor. Segment AB in Figure 11 is modeled as a cantilever with a tip rota-
tional spring, and subjected to Fseis: andMseis:. The ratio of lateral displacement to rotation is
given by Equation 13 (online Appendix C), neglecting shear deformation:

EQ-TARGET;temp:intralink-;e13;41;503ψ0 ¼
uB

θBαh
¼ 3� α

6� 3α
þ Kr

6EIc
� α2

2� α
� h (13)

where equivalent linear rotational stiffness Kr ¼ l2t K (note difference to kr). The equivalent
vertical stiffness K is defined by the overall bending stiffness of the outrigger truss, perimeter
columns and damper on the RC core, and can be expressed as:

EQ-TARGET;temp:intralink-;e14;41;427K�1 ¼ ð2kbÞ�1 þ ð2cdωDÞ�1, kb�1 ¼ kt�1 þ
�
kc
α

��1

(14)

Segment AB’s displacement curve is assumed to be sinusoidal and can be expressed as
Equation 15, considering boundary conditions:

EQ-TARGET;temp:intralink-;e15;41;358Ỹ1ðxÞ ¼ Amp:

�
1� cos

γx
αh

�
, subject to

�
0 ≤ x ≤ αh
cos γ þ ψ0γ sin γ � 1 ¼ 0, 0 < γ < π

(15)

where Amp: represents the first-mode shape amplitude. The geometric parameter γ is a func-
tion of the lateral displacement to rotation ratio ψ0.

The displacement curve for segment BC is taken as an approximately linear function:

EQ-TARGET;temp:intralink-;e16;41;269Ỹ2ðxÞ ¼ Ỹ1ðαhÞ 0 � ðx� αhÞ þ Ỹ1ðαhÞ, αh ≤ x ≤ h (16)

The displacement curve has a much simpler form when compared with the general solu-
tion given in Equation 3.

As a result the first-mode equivalent damping ratio is given by:

EQ-TARGET;temp:intralink-;e17;41;194ξ̄ðα, cdÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f ðα, cdÞ2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðα, cdÞ4 þ f ðα, cdÞ2

p
þ 2

q (17)

where:

EQ-TARGET;temp:intralink-;e18;41;129f ðα, cdÞ ¼
3EIc
l2t hkb

�
�

kb
cdωD

þ
�

kb
cdωD

��1
�
1

α
�
�

γ2

12sin2γ
þ γ sin 2γ

24sin2γ

�
þ
�

kb
cdωD

��1

(18)
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In Equations 17 and 18, the only unknown variables are the outrigger location α and
damper size cd, as the RC core bending stiffness EIc and column-outrigger truss stiffness
kb are reasonably assumed to be constant here rather than a function of outrigger location
α, which will make following analysis simpler. As Equation 18 is used to predict the damping
ratio ξ̄, but is a function of the damped frequency ωD, iteration can be avoided by substituting
the non-damped first-mode frequency ω̃1, and refer to the approximate function as damping
function f̄ ðα, cdÞ.

MODE SHAPE, DAMPING RATIO AND NATURAL PERIOD OF SDOF MODEL

Mode Shapes

Using the displacement curve given by Equation 15 and Equation 16, the mode shape of
the SDOF model with different outrigger locations and damper sizes can be obtained and
compared with the first mode of the CEA model, given by Equation 3. Figure 12 shows the
change with increasing damper size. Generally, the rotation constraining effect of the
damped-outrigger is more obvious in the CEA model, especially when damper size is

Figure 12. First-mode shape comparison of SDOF model and CEA model.
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large in 16F model, but the SDOF is still a good representation for outrigger locations above
mid-height and for reasonably sized dampers in 32F and 64F models.

Damping Ratios

The SDOF model damping ratios can be calculated using Equation 12, and in Figure 13
are compared with the CEA model, given by Equation 8. Good agreement was achieved for
the 32F and 64F models, but the SDOF 16F model deviated substantially. This is because the
imaginary components of the mode displacement curves include the damping effect, and so at
the damped-outrigger floor a discontinuity is observed. This discontinuity is more significant
in the CEA than SDOF mode shape.

Natural Periods

The fundamental frequencies of the SDOF models can be obtained from the damping
ratios and corresponding non-damped frequencies in Equation 12. The first-mode periods
of the CEA models were compared in Figure 13b. When the outrigger location is low,
the SDOF model appears to underestimate the first-mode period. This is because the displa-
cement curve is unable to accurately simulate the first-mode shape when the outrigger is
located close to the base floor, as shown in Figure 12(d). To ensure that the fundamental
period is accurately estimated, use of the SDOF model should be limited to buildings
whose outrigger is located above mid-height.

SEISMIC RESPONSES COMPARISON WITH MBM AND CEA MODELS

Figure 14 summarizes the maximum responses of the SDOF, MBM and CEA models,
similar to Figure 8. The outrigger location is limited to α > 0.5. In Figure 14a, the SDOF and
CEA models both slightly underestimate the peak lateral displacement, but are otherwise in
good agreement with each other. Figure 14b compares the story drift, showing that the SDOF

Figure 13. Damping ratio and period comparison of SDOF models and CEA models.
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underestimates the drift relative to the CEA and MBM models. Generally, the prediction of
peak lateral displacement is much better than that of story drift, because in story drift
response, higher modes’ components possess larger portion of total response value than
in lateral displacement. So the SDOF model is applicable for evaluating maximum lateral
displacement with safety factors of around 30%, while the CEA model is more suitable for
evaluating story drifts.

OPTIMAL OUTRIGGER LOCATION AND DAMPER SIZE OF SDOF MODEL

As previously discussed, the damping ratio ξ̄ is more critical than the period shift effect in
controlling the dynamic response. Also, the optimal outrigger location α and damper size cd
often correspond to maximum first-mode damping ratio, as shown in Figure 6a and Figure 9.
Therefore, the optimal outrigger location and damper size to achieve the maximum mode
damping ratio ξ̄ are defined as αopt or cd,opt using SDOF model.

The optimization problem of maximizing the damping ratio ξ̄ in Equation 17 is equivalent
to minimizing the damping function f̄ ðα, cdÞ. The damping function f̄ ðα, cdÞ is composed of
three dimensionless parameters summarized as follows:

EQ-TARGET;temp:intralink-;sec4.4;62;201

Str ¼ l2t hkb
3EIc

∶ outrigger stiffness parameter ðlarger with stiffer outriggerÞ;
Rat ¼ cdω̃1

kb
∶ damping parameter ðlarger with higher dampingÞ;

α∶outrigger location

The values of Str and Rat for the 16F, 32F and 64F MBM models are summarized in
Table 1. When the building increases in height, the outrigger stiffness parameter Str decreases

Figure 14. Maximum seismic response comparison of SDOF, MBM, and CEA models (α > 0.5).
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and for the example models varies from 0.22 to 1.01. For actual buildings less than 200 m in
height (64F model), Str would be expected to vary between 0.2 ≤ Str ≤ 2.

The damping parameter Rat is always larger than 0.1, with Rat ≤ 0.1 corresponding to inef-
fectively small damping (e.g., cd ¼ 5 kNsec=mm for a 32F model or cd ¼ 3 kNsec=mm for a
16F model). In Figure 10, the optimal damper size was always found within the range of damper
sizes considered, and so the optimal value would be expected to correspond to Rat ≥ 0.1.

In Figure 9, the optimal outrigger locations αopt are above the mid-height for all cases.
Therefore, we assume that α varies between 0.4 ≤ α ≤ 1 to determine the optimal outrigger
location. Using the least square function fitting when α ∈ ½0.4, 1�, optimal outrigger location
αopt can be approximately expressed by:

EQ-TARGET;temp:intralink-;e19;41;507αopt ¼
3.278S2trR2

at þ 0.751Strð1þ RatÞRat þ 0.573ð1þ RatÞ2
6.75S2trR2

at þ 1.805Strð1þ RatÞRat þ 0.625ð1þ RatÞ2
(19)

Here Rat (damper size) is considered to be a constant. Substituting the optimal outrigger
location expressed in Equation 19 into the damping ratio ξ̄ given in Equation 17, the max-
imum damping ratio of SDOF models can be obtained.

Similarly, the optimal stiffness ratio for Rat when Str and α are fixed can be approximately
expressed by Equation 20, and the optimal damper size obtained by referring to previous
equations.

EQ-TARGET;temp:intralink-;e20;41;384Rat,opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.199α2 � 0.59αþ 0.606

2.009α4S2tr þ Strαðα� 2Þ2 ,
s

cd,opt ¼
kbRat,opt

ω1

(20)

Responses Comparison Between Optimized and Non-Optimized Models

The proposed method for determining the optimal outrigger location and damper size
by maximizing the damping ratio of the SDOF model was verified by applying
Equation 19 and Equation 20 to the MBM models listed in Table 1, and the results are
summarized as follows.

Figure 15 compares the seismic responses of the MBM models with optimized outrigger
locations calculated from Equation 19 and the original models. For the 32F and 64F models,
the optimized models generally achieved the smallest lateral displacement and story drift.
Generally, increasing the damper size for the optimized model led to worse performance,
because when damper size increased over the optimal size, the stiffness of equivalent rota-
tional spring increases and approaches to ordinary outrigger system whose equivalent damp-
ing ratio decreases. In all cases, the optimal outrigger locations were above 40% of the
building height, 0.4 ≤ α ≤ 1.

Using Equation 20, the damper sizes cd of the models listed in Table 1 are set to the
optimal damper sizes cd,opt, given an outrigger location α. The seismic response compar-
ison of various outrigger locations is shown in Figure 16. Generally, the optimized dam-
per size is able to capture the minimum response from the original non-optimized models.
Hence the proposed optimal equations using SDOF models are considered to be valid for
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determining the optimal outrigger location and damper size even the evaluated response
values are approximate. These equations are also available for multipurpose optimization
as shown in Figure 17, by iterative process.

Figure 15. Seismic responses of 16F, 32F, and 64F MBM models with optimal outrigger loca-
tion by Equation 19. Input seismic wave: BCJ-L2.

Figure 16. Seismic responses of 16F, 32F, and 64F MBM models with optimal damper size by
Equation 20. Input seismic wave: BCJ-L2.
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PERFORMANCE CURVE AND DESIGN METHOD BASED ON SDOF MODEL

The SDOF model is sufficient to estimate the rough seismic response of the single-
damped-outrigger system, and to optimize the outrigger location or damper size. In this
section, the relationship between natural period, damping ratio ξ̄, outrigger location α,
and stiffness ratio Rat is further summarized in step by step procedures, followed by a per-
formance curve proposal. This graphical method enables the engineer to easily evaluate the
seismic response mitigation effect for a given α and Rat.

As previously discussed, the SDOF model’s accuracy is better for moderating damping
ratios (ξ ≤ 0.2), such as those achieved in the 32F and 64F models, and when the outrigger
location α satisfies 0.4 ≤ α ≤ 1. As the period is not as sensitive to changes in the outrigger
location α and damper size cd as the mode damping ratio (Figures 4 to 6), this section will be
limited to discussion of effect of varying α and cd.

Performance curves (JSSI 2005) of the 32F and 64F models are shown in Figure 18.
Because both of these models are in the velocity constant region, the displacement and accel-
eration reduction factor are expressed as:

EQ-TARGET;temp:intralink-;e21;41;225rd ¼
SdðTD, ξeqÞ
SdðTf , ξ0Þ

¼ Dh �
TD

Tf
, ra ¼

SaðTD, ξeqÞ
SaðTf , ξ0Þ

¼ Dh:
Tf

TD
(21)

where:

EQ-TARGET;temp:intralink-;e22;41;166Dh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 75ξ0
1þ 75ξeq

,

s
ξ0 ¼ 0.05, ξeq ¼ ξ̄þ ξ0 (22)

Dh is a parameter reflecting damping’s mitigation effect on seismic responses, and TD is
natural period of system with damper, while Tf without damper (only frame). In Figure 18a
and 18b, minimum values of rd and ra are obtained at almost the same point with Rat ≈ 0.6

Figure 17. Combined optimization.
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(cd ¼ 30 kNsec=mm for 32F model, cd ¼ 60 kNsec=mm for 64F model) and α ≈ 0.8. The
optimal design method proposed above suggests that the displacement and acceleration
response can be reduced to 50% and 60%, respectively, of the non-damped model. Moreover,
an excessively large damper is inefficient in displacement reduction and will magnify the
acceleration response, which suggests that a conventional outrigger system (cd ¼ ∞) will
have a relatively poor performance.

The design process based on the SDOF model is outlined in Figure 19. First, the main
structure (RC core) is sized and the outrigger-column stiffness (kb) determined, resulting in
Str ¼ const. The structural response is formulated as a function of outrigger location α and
damper size cd, as expressed in the damping function f̄ . Next, confirm that the parameters, α,
Str and Rat, are within the applicable range for the proposed fitting functions and select the
appropriate design target. Use Equation 19 to optimize the outrigger location holding the
damper size constant, otherwise optimize the damper size for a given outrigger location
using Equation 20. After α (or αopt), Str and Rat (or Rat,opt) are determined, the period

Figure 19. Optimal design process for determining outrigger location and damper size.

Figure 18. Performance curve of 32F and 64F models.
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TD and damping ratio ξ̄ can be evaluated using Equation 12, and a design response spectrum
used to determine the structural response, such as peak lateral displacement and story drift
with some safety factors.

CONCLUSIONS

In this paper, complex eigenvalue analysis (CEA) was used to obtain the seismic peak
lateral displacement and story drift of a single-damped-outrigger system, including higher
mode effects. A simplified SDOF model based the first-mode shape and virtual work
was then proposed and its accuracies verified through a comparison study. The optimal out-
rigger location and damper size can be determined using newly proposed stiffness and damp-
ing indexes, Str and Rat, respectively. In summary:

1. The CEA model is able to evaluate the single-damped-outrigger system’s dynamic
response, including peak lateral displacement and story drift. In this study, good
agreement was achieved for the taller buildings (≥32 stories). The mode shape,
damping and period of the first-mode are the three most important factors affecting
the structural response. The damping ratio is the most sensitive to the outrigger loca-
tion and damper size, and thus it is most capable of influencing the structural
response.

2. There are optimal values of outrigger location αopt and damper size cd,opt to mini-
mize the structural dynamic response. The optimal values of αopt and cd,opt increase
with building height. The optimal outrigger location typically falls between
0.5 < αopt < 0.8, and the optimal damping parameter (which determines the damper
size) between 0.5 < Rat < 1. However, the achievable damping ratio reduces with
building height as well as the achievable response reduction effect.

3. A simplified SDOF model derived from the principle of virtual work is confirmed to
be valid in evaluating the response of the single-damped-outrigger system when the
outrigger location α ≥ 0.4 and number of stories is ≥32.

4. The optimal outrigger location αopt and damper size cd,opt can be evaluated based on
the simplified SDOF model using the proposed outrigger stiffness index Str and
damper size index Rat, by assuming αopt and cd,opt are parameters by which the
first-mode’s maximum damping ratio is achieved. Performance curves for evaluat-
ing the response reduction effect are presented.

These studies are limited in scope to the single-damped-outrigger system. However, fol-
lowing studies have already confirmed that the same approach is applicable for multileveled
damped-outrigger-systems, which will be reported in the near future.
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