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APPLICATION OF SEISMIC ISOLATION BEARINGS 

FOR RACK WAREHOUSE TO PREVENT GOODS FALLING 
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Toru TAKEUCHI, Michiyasu YOSHIDA, Masakaze UCHIDA, Osamu NISHI and Ryota MATSUI 

 

  
 The seismic response of rack warehouses is known to be reduced by horizontal sliding of the warehouse contents, which act as mass dampers. However, in 

past earthquakes business continuity has been interrupted due to damage from spilling, toppling or falling contents. In this paper, response control using 

seismic isolation is investigated. Because the total rack weight is constantly changing and the rack is often loaded at large eccentricities, Spherical Sliding 

Bearings (SSB) are proposed, which exhibit natural periods independent of the supported weight. Based on numerical and experimental test results 

undertaken previously, an analytical model is proposed including pressure and velocity dependent friction values. Using the proposed model, the 

performance of a seismically isolated rack warehouse with variable weight and eccentricity is studied and compared with conventional rubber bearings. 

 

Keywords: Rack warehouse, Seismic Isolation, Spherical Sliding Bearing, Variable Weight, Eccentricity  
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1. Introduction 
 The seismic response of rack warehouses is known to be reduced by horizontal sliding of the warehouse contents, which act as mass 
dampers. However, in past earthquakes business continuity has been interrupted due to damage from spilling, toppling or falling 
contents. In this paper, response control using seismic isolation is investigated. Because the total rack weight is constantly changing 
and the rack is often loaded at large eccentricities, Spherical Sliding Bearings (SSB) are proposed, which exhibit natural periods 
independent of the supported weight. Based on numerical and experimental test results undertaken previously, an analytical model is 
proposed including pressure and velocity dependent friction values. Using the proposed model, the performance of a seismically 
isolated rack warehouse with variable weight and eccentricity is studied and compared with conventional rubber bearings. 
2. Analytical Models 
 The modeled rack warehouse is 25m high, 19m wide and 45.6m long which can store 4096 pallets. To reduce the calculation 
time, an equivalent simplified model is constructed with natural periods of 0.24 sec. in transverse direction and 0.03 sec. in 
longitudinal direction. Three types of base isolation bearings composed of rubber bearings with elasto-plastic and viscous 
dampers, together with SSB are installed under the concrete slabs supporting the rack, targeting a natural period of 4.0 sec. and 
30 % damping. 
3. Proposal of SBB analysis model. 
 For expressing vertical movement and vertical pressure transition, a pendulum model taking pressure and velocity 
dependency into account is proposed. As compared to the conventional multi shear spring (MSS) model, the proposed 
multi-directional friction model (FP model) more accurately models the effective sliding stiffness. The reason for this is that 
while the MSS model accurately represents the multi directional stiffness, each spring slips independently, producing a higher 
post-slip effective stiffness as the movement changes direction. The response using the proposed model was compared with the 
shaking table test results, and its validity confirmed. 
4. Dynamic response characteristics of base-isolated rack warehouse 
 Using the proposed SSB model, response characteristics of seismically isolated rack warehouses with each isolation system 
subjected to various content distributions are investigated. Introduction of SSB drastically reduces the torsional response, even 
under eccentric loading distributions. The difference between the results of conventional MSS model and the proposed FP 
model were found to be around 40% in response displacements. 
5. Spilling risk analysis of slipping goods 
 Finally, spilling risk analysis of the slipping goods is carried out. A feedback model including the spillage and mass changing 
caused by spilling is carried out. Then a floor response model in which floor-by-floor acceleration responses are input into a 
separate model of the goods to check if slippage or spilling occurs is constructed and its validity is confirmed against feedback 
model. Using this procedure, time history analysis was carried out for each seismically isolated rack warehouse model. It was 
found that spillage does not occur until around three times the 500 year earthquake for the seismically isolated configurations. 
However, it was noted that once the goods spill at one floor commences, relatively small increases in the earthquake intensity 
cause the goods at the other floors to follow. 
6. Conclusions 
 Results are summarized in the conclusions as follows. 
1) The proposed analytical SSB model explains the shaking table test results well and is considered to be valid. 
2) Introducing seismic-isolation bearings under the rack warehouse drastically reduce the spilling risk of warehouse 

contents. SSB effectively reduces the torsional response, even under eccentric loadings. 
3) Introduction of seismic isolation into the rack warehouse generally prevents goods falling until three times the 500 year 

return period earthquake in Japan. 
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