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SEISMIC PERFORMANCE OF VARIOUS SPINE FRAMES  

WITH ENERGY-DISSIPATION MEMBERS 
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Recently, various controlled rocking systems have been proposed in seismic design to prevent damage concentration and to achieve 

self-centering against a wide range of input ground motion intensities. However, there are several obstacles to overcome before they can be applied 

to actual buildings, such as the requirement of large, self-centering post-tensioned (PT) strands and special treatment at uplift column bases. This 

paper proposes a non-uplifting spine frame system with energy-dissipating members without PT strands; its self-centering function relies on 

envelope elastic moment frames. The system is applied to an actual building constructed in Japan. Conventional shear damper and uplifting 

rocking systems with PT strands developed in prior studies are applied to the same building structures, and the performance of the three systems, 

including damage distribution, energy dissipation, self-centering, robustness against severe earthquake, and irregular stiffness, is compared and 

discussed through numerical simulations. 
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Table 1 Dimensions, gravity load and mass distribution 

 Story Height 
(m) 

Span of beam 
(m) 

Gravity Load 
(kN/m2) 

Mass 
(kN/m2) 

Roof - 4.5 11.3 10.6
2nd~5th Story 4.0 4.5 7.65 6.65

1st story 4.2 4.5 - -
Total 20.2 27 30500 27000

Table 2 Sizes and materials of typical members 
Structural members Size (mm) Material  MP(kNm) 

Beams H-500×300×12×19 SN400B 870 
Columns in MRF Box-500×500×19 SN490B 2360 

Columns in 
BRBF/RF/SF Box-550×550×25 SN490B 3700 

Braces in RF/SF H-600 × 550 × 25 × 25  SN490B 3374 
MRF: , BRBF:BRB RF: SF:  

BRB

BRC 

PT strands Rocking Frame

Uplifting

Spine FrameEnvelope frame

BRC BRC 

 

X

Y

Seismic 
direction 

Shear 
BRB 
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Fig. 1 Concept of element configuration and hysteretic curves of the three structural systems
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(a) Shear damper system (SD) 

MOT

RDR
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(c) Non uplifting system (NL)

Fig. 2 MCES research building, Tokyo Tech 

Fig. 3 Plan of the building 

Rigid end 
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Table 3 Section area and yielding force of BRBs in SD model  
Story Section area  

ABRBi (mm2) 
Yielding force  

Fy_BRBi (kN) 
Strength ratio

QBRB/Qu  
5 4300 970 0.15 
4 5900 1330 0.15 
3 7100 1600 0.15 
2 8000 1800 0.15 
1 8700 1960 0.15 
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Fig. 7 Comparison of 2nd story SDR time history response of three 
models (Hachinohe NS) 

Fig. 5 Acceleration spectra of normalized ground motions (h0=0.02)

Fig. 4 Pushover analysis results of three models 
Fig. 6 Overturning moment and roof drift ratio hysteresis loops (Hachinohe NS)
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(MOT)- (RDR) Fig. 6 LU

Fig. 7 

Hachinohe NS (SDR)  

Fig. 8 15 SD

2 Hachinohe 1%  

1

2

3

4

5

0 5 10 15 20 25

St
or

y 

Shear force (103kN)

Qu

Fig. 8 Maximum story drift ratio of each story in SD, LU, and NL models 

Fig. 9 Drift concentration factors
of three models 

(Ground motion ID: 1.ElCentro 2.Hachinohe
3.JMA Kobe 4.TAFT 5.BCJ-L2; these are
same in the following figures) 

Fig. 10 Residual story drift ratio of each story in SD, LU, and NL models
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1. Introduction 
 Catastrophic earthquakes striking beneath Tokyo and along the Nankai trough have been predicted to occur with high 
probability, which warns that, the existing buildings in those areas are running a high risk of suffering earthquake shaking 
beyond the conventional design level. In order to prevent damage concentration at weak stories and to mitigate residual 
deformation, various controlled rocking systems have been proposed. However, to apply these systems to actual buildings, 
several obstacles must be overcome. To eliminate these difficulties, this paper proposes a new non-uplifting spine frame (NL) 
system without PT strands. The proposed system is applied for an actual building structure under construction, and its 
performance is compared with a conventional shear damper (SD) system and a controlled uplifting rocking frame (LU) system 
with PT strands. 
2. Design and Modeling of Structural Systems 
 The proposed NL system consists of: 1) a stiff braced steel frame (for example, spine frame); 2) replaceable energy 
dissipating members; 3) envelope moment frames. The spine frame plays a key role in distributing damages uniformly to 
whole stories. The envelope moment frames remain mostly elastic and provide self-centering performance. The proposed NL 
systems are designed with the same condition for an actual building under construction, and compared with the steel 
moment-resisting frame with SD, and LU systems. Detailed three-dimensional nonlinear models were developed in the 
OpenSEES software. 
3. Seismic Performance of Three Structural Systems 
 Nonlinear dynamic analysis was conducted to evaluate the performance of the three systems. Five ground motions which 
were scaled to follow the BRI-L2 were used herein. Some key parameters, for example maximum story drift, drift 
concentration factor, residual story drift, and cumulative plastic strain energy, were compared and discussed. In addition, the 
limit-state capacities of the three systems were studied by incremental dynamic analysis. 
4. Seismic Performance with Single-story Irregular Configuration  
 The models in previous sections were modified to irregular models by degrading stiffness and strength of columns in a 
specific story. Same analysis methods with those in section 3 were employed to validate the seismic behavior of the NL system 
with irregular configurations. 
5. Conclusion 

The following conclusions were summarized from this study. 
1) For the regular models subjected to a design-level earthquake, the proposed NL model achieved the smallest story drifts and 

damage concentration factors compared with the SD and LU models. Additionally, the residual story drift of the NL model was 
as small as that of the LU model, even without PT strands. The LU model resulted in more damage in the envelope frames, 
whereas the envelope frames in NL model remained almost undamaged. 

2) In the incremental dynamic analysis, the LU model and the NL model showed stable seismic performance with increased input 
ground motion intensity.   

3) Even for the irregular models with unbalanced vertical strength distributions subjected to a design-level earthquake, the story 
drifts, damage concentration factors, and residual story drift of the LU and NL models were kept consistent with those of the 
regular models. In contrast, severe damage concentration in the irregular story was observed in the SD model.  

4) The first-story irregular LU model exhibited degradation after the bottom diagonal members in the rocking frame yielded during 
IDA analysis, similar to the degradation of the SD model. In contrast, the proposed NL model showed stable performance with 
increased input ground motion intensity even with the irregular first story. 

In summary, the proposed NL spine frame was verified as showing excellent performance in preventing damage concentration in 
weak stories as well as sufficient self-centering capacity and robustness under large earthquakes even without PT strands. 
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