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Abstract: The postbuckling behavior of seismic-resistant braces in steel frames under a cyclic axial force is often evaluated by time–history
analyses; however, brace fracture is seldom considered. The authors previously proposed a physical model for predicting the moment
of fracture of circular-tube braces after buckling using phenomenological hysteresis. However, the accuracy of that model was confirmed
only against the test results of the gradually increasing amplitude loading protocol, and its applicability under other loading histories has not
yet been verified. In this study, cyclic loading tests were carried out until fracture on circular-tube and H-section braces under various loading
histories, followed by FEM analyses. The validity of the proposed formulas for evaluating the strain-concentration index under various
loading histories was examined. The proposed method was used for predicting the moment of fracture and the cumulative deformation
capacity until fracture, and the predictions agreed well with the test results. DOI: 10.1061/(ASCE)ST.1943-541X.0001146. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.
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Introduction

Circular-tube or H-section members are commonly used in seismic-
resistant axial elements such as truss structures or diagonal braces
in concentrically braced frames (CBFs), together with rectangular
hollow sections. When a seismic force exceeds the buckling
strength, these brace sections are subjected to cyclic loading after
buckling. Various hysteresis curve models have been proposed
for such braces (e.g., Prathuangsit et al. 1978; Jain et al. 1978;
Popov et al. 1979; Shibata 1982) and are commonly used for
performing time–history response analyses of braced structures, in-
cluding postbuckling behavior. However, these braces are subjected
to local buckling near their midpoint, which results in fracture soon
after; such fractures are not considered in ordinary time–history
analyses. The results of Jain et al. (1980), Tremblay (2002), and
Elchalakani et al. (2003) indicate that the fatigue performance
of hollow-section members depends on the diameter-to-thickness
and slenderness ratios, and that local buckling degrades cumulative
deformation capacity. Tang and Goel (1989) proposed formulas for
evaluating the cumulative deformation capacity based on these
parameters. However, their experimental results showed that the
deformation amplitude of the braces is correlated with their perfor-
mance, thus indicating that the cumulative deformation capacity—
strain amplitude relationship is not yet fully understood. Based on
their experience with detailed finite-element method analyses, Uriz
and Mahin (2004), Kanvinde and Deierlein (2007), Tremblay

(2008), and Fell et al. (2009) proposed a micromechanics-based
fracture model of large-scale structural components for explaining
the test results. However, such analyses using micro models are
time consuming and impractical for general use, especially for large
CBFs with many braces, as described by Li et al. (2013). To satisfy
such a demand, Hsiao et al. (2013) evaluated the fracture life equa-
tions using line-element models against over 40 test results for
rectangular hollow-section braces. Takeuchi et al. (2008), and
Takeuchi and Matsui (2011) proposed a method that evaluates
the cumulative deformation capacity of circular-tube and H-section
braces until fracture using phenomenological macro models as the
Shibata–Wakabayashi model (Fig. 1, Appendix). In this approach,
the local plastic strain estimated using strain concentration ratio
formulas are compared to the low-cycle fatigue curves of the
material. They validated their method through cyclic loading tests
on braces of various sizes. However, the method has only been
confirmed using the test results of gradually increasing amplitude
loading history, and its applicability under other loading histories
has not yet been verified.

In this study, a fracture-prediction method based on the concept
of using the strain-concentration ratio index is presented for cir-
cular-tube and H-sections, and cyclic loading tests were carried
out on said sections under various loading histories until fracture
occurred. The buckling hysteresis obtained from the experiments
was reproduced using FEM analysis, and the relationship between
the local strain in the strain-concentration zone and the normalized
axial deformation was investigated for validating the assumptions
of the proposed formulas. Finally, the cumulative deformation
capacities until fracture of the braces were compared with the cor-
responding results obtained using the proposed formulas under
various loading histories.

Fracture-Prediction Formulas for Circular-Tube and
H-Section Braces

The authors (Takeuchi and Matsui 2011) previously proposed
formulas for evaluating the local strain εh of circular-tube
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braces after overall buckling and local buckling as a ratio
against normalized axial deformation amplitude Δεn ¼ Δδ=L.
Here, δ denotes the axial deformation of braces, Δδ de-
notes the amplitude of δ, and L denotes the brace length.

The strain concentration ratio αc is expressed as a function
of Δεn separated into three stages, as given by in Eq. (1): pre-
buckling and tensile, after overall buckling, and after local
buckling

αc ¼
Δεh
Δεn

¼

8>>>>>>><
>>>>>>>:

1.0 ðΔεn ≤ εcr; prebuckling stage and tensile stageÞ
θhD

Lkð1 − π
4
ÞΔεn

ðεcr < Δεn ≤ εlb; overall buckling stageÞ

3
ffiffiffi
6

p
φh

π
ffiffiffi
D
t

q
Δεn

þ θlbD
Lkð1 − π

4
ÞΔεn

ðεlb < Δεn; local buckling stageÞ
ð1Þ

where Δεh = local strain amplitude; θh = hinge angle; D = cir-
cular tube diameter; Lk = effective buckling length; φh = angle of
the skin plate in the local buckling zone; θlb = hinge angle at-
tained at local buckling; εcr ¼ σcr=E = equivalent strain corre-
sponding to overall buckling; σcr = overall buckling stress;
and E = elastic modulus. By employing Eq. (1), the local strain
amplitude, Δεh, in the plastic hinge zone can be calculated by
multiplying αc and the normalized axial deformation amplitude
Δεn. The moment of fracture can be predicted to be the point at
which the cumulative local strain amplitude satisfies the low-
cycle fatigue criterion of the steel material. These formulas are
derived from the simple buckling models shown in Figs. 2
and 3. The effective buckling length, Lk, is defined in Fig. 4
based on the three-hinge mechanism. In the figure, Mpg denotes
the plastic bending moment strength at the connections, and Mpb
denotes the plastic bending moment strength at the brace section.

Similar to the procedure for circular-tube braces, the local strain
formulas of H-section braces are determined as follows. During
overall buckling, a plastic hinge is assumed to occupy the center
of the brace, as shown in Fig. 2. The plastic-hinge zone length
is calculated using Eq. (2)

Lh ¼ Lk

�
1 − S

Z

�
ð2Þ

where S = sectional modulus of the brace about the weak axis and
Z = plastic sectional modulus about the weak axis. The hinge angle,
θh, is expressed by Eq. (3), and the equivalent strain amplitude
of the braces on the compression side is determined using
Eq. (4), which includes a term for the maximum equivalent tensile
strain, εntm, observed before compression

θh ¼ cos−1ð1 −ΔεnÞ ð3Þ

Δεn ¼ εntm − εn ð4Þ

The local strain in the plastic strain concentration zone, εh, is
calculated as the average approximation expressed by Eq. (5)

εh ¼
θhB
Lh

¼ θhB
Lð1 − S

ZÞ
ð5Þ

where B = width of the H-section. The local deformation of the
H-section brace during the local buckling stage is modeled as
shown in Fig. 5. Eq. (6) expresses the normalized axial deformation
that provokes local buckling, εlb (Kato and Nakao 1994), and the
hinge angle that leads to local buckling can be calculated using
Eq. (7), which is identical to Eq. (3)

εlb ¼
3

2

�
2tf
B

�
2

ð6Þ

θlb ¼ cos−1ð1 − εlbÞ ð7Þ

The hinge angle increment in the local buckling zone,Δθh, may
be calculated using Eq. (8)

Δθh ¼ θh − θlb ðθh > θlbÞ ð8Þ

The angle of the skin plate in the local buckling zone, φh, is
calculated according to Eq. (9) using the hinge angle increment,
Δθh, at which local buckling occurs, and vertical angle of local
buckling wave, ϕ, as shown in Fig. 5; this is based on the relation-
ship between Eqs. (10) and (11) using the classical plate-buckling
theory (Timoshenko and Gere 1961)

φh ¼ cos−1
�
B sinðϕ −ΔθhÞ

lp cosϕ

�
¼ cos−1

�
sinð0.685 −ΔθhÞ

0.6334

�
ð9Þ
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Fig. 1. Shibata–Wakabayashi model for postbuckling hysteresis
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Fig. 2. Plastic hinge model for overall buckling
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lp ¼ 1.635 ·
B
2

ð10Þ

ϕ ¼ tan−1
�
lp
2
=
B
2

�
¼ tan−1ð0.8175Þ ¼ 0.685 rad ð11Þ

Here, the bending-moment distribution in the local buckling
zone of the flange is assumed as shown Fig. 6, which is the
same as that in Fig. 4 for overall buckling. The section of the local
buckling area is assumed as rectangular, ratio of the sectional
moduli (Sl=Zl) and bending-moment moduli (My=Mp) becomes

2=3, and local effective plastic-buckling length of Fig. 6 becomes
lpk ¼ ð3=5Þlp. Then, the strain in the hinge zone is taken as the sum
of overall and local buckling, as expressed by Eq. (12)

εh ¼
φhtf

lpkð1 − Sl
Zl
Þ þ εlb ¼

5φh

1.635ð B
2tf
Þ þ

3

2

�
2tf
B

�
2

ð12Þ

Thus, the strain concentration ratio, αc, of an H-section is
expressed by Eq. (13)

αc ¼
Δεh
Δεn

¼

8>>>>>>><
>>>>>>>:

1.0 ðΔεn ≤ εcr; prebuckling stage and tensile stageÞ
θhD

Lk

�
1 − S

Z

�
Δεn

ðεcr < Δεn ≤ εlb; overall buckling stageÞ

5φh

1.635
�

B
2tf

�
Δεn

þ 3

2Δεn

�
2tf
B

�
2

ðεlb < Δεn; local buckling stageÞ

ð13Þ

Cyclic Loading Tests under Various Loading
Histories

In previous studies, the results of the proposed Eqs. (1) and (13)
were compared with the results of a cyclic-loading test under the
gradually increasing amplitude loading history conducted on vari-
ous circular hollow braces having diameter-to-thickness ratios,
D=t, of 21–32 and slenderness ratios of 50–100, and various
H-section braces having width-to-thickness ratios, B=2tf , of
6–13 and slenderness ratios of 50–100. The comparison confirmed
that the equations could predict the moment of fracture. In this
study, cyclic loading tests were carried out under various axial de-
formation histories. The test setup is shown in Fig. 7, and test spec-
imens’ configurations are shown in Fig. 8 and listed in Table 1. The
specimens were supported by gusset plates at both ends: one end of
a specimen was attached to the reaction frame and the other to the

sliding table equipped with an actuator. The circulartube braces
possessed a slenderness ratio λ ¼ 70 and a diameter-to-thickness
ratio D=t ¼ 28, and the H-section braces possessed a slenderness
ratio λ ¼ 70 and a width-to-thickness ratio B=2tf ¼ 10. These
ratios were the averages of those of the specimens used in the pre-
vious studies. LB denotes the distance between the plastic hinges

Local Buckling Zone

∆θh

ϕ h

Dtan∆θh

∆θh
D

t

Hinge Zone εh

lp

CL

Local Buckling Zone

θh

εhP P

Fig. 3. Local buckling model for circular tubes

Mpb

Mpg
Effective Buckling Length Lk

Mpg

Buckling Length LB

Brace Length L0

Fig. 4. Effective plastic buckling length

Fig. 5. Local buckling model for H-section
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that occurred at both the gusset plates, as shown in Fig. 4. The ef-
fective plastic buckling length, Lk, was estimated to be 0.76LB for
the circular-tube braces and 0.69LB for the H-section braces. The
axial deformation, δ, was measured in the test using LVDTs placed
between both ends of the base plates. The axial force acting on the
specimen, P, was calculated from the load cell installed in the ac-
tuator. The surface strains of the specimens were detected by linear
large strain gauges, as shown in Figs. 8(a and b). The normalized
axial deformation, εn, and equivalent stress, σn, which are redefined
in the following equations, were used as indices

εn ¼
δ
LB

; σn ¼
P
A

ð14Þ

where A = original sectional area of the braces.
In the test, the following axial deformation histories were

applied to each specimen. The positive strain indicates tension
in the following. When the rigid connection lengths of the quarter
of total brace length are assumed in the both sides of 45-degree
braces, the normalized axial deformation of the brace meets an
approximate value of a story drift ratio.
1. Gradually increasing cyclic amplitude: As shown in Fig. 9(a),

the cyclic loading protocol for all of the series was defined by
the normalized axial deformation, εn. The half-amplitude of εn
was increased by 0.1, 0.5, 1.0, and 2.0% for three cycles for
each value in the series. After the third cycle at 2.0%, the half-
amplitude was maintained at 2.0% until brace fracture.

2. Gradually decreasing cyclic amplitude: As shown in Fig. 9(b),
the half-amplitude of εn was decreased from 1.0% to three cycles
each at 0.75% and 0.5%, followed by 0.5% until brace fracture.

My

My My

Mp

lpk

lp

My

Fig. 6. Effective local buckling length

500kN
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Sliding
Direction

Specimen

Beam
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e L
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Fig. 7. Test setup
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(a)

(b) (c)

GPL-12

Strain Gauge

End Plate

End Plate

End Plate

A

C C

A

Circular-
tubular
brace

H-Section
Brace G. PL

A, B

A, B A, B

A, B

A

A

A

A

A, B

A, B

GPL-12

Fig. 8. Test specimen: (a) circular tubular brace; (b) H-section brace; (c) section

Table 1. Specimen Details and Material Properties

Specimen
Material
(JIS) Section (mm)

Sectional
area
(mm2)

Length

Slenderness
ratio

D=t
B=2tf

σy
(N=mm2)

σu
(N=mm2)

Elongation
(%)

L0

(mm)
LB

(mm)
Lk

(mm)

P728 STK400 Dia89.1 × t3.2 864 2,456 2,127 1,617 70 28 365 456 27.1
H710 SS400 H-90 × 90 × tw4.5 × tf4.5 1,175 1,865 1,511 1,046 70 10 327 430 28.0
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3. Eccentrically increasing cyclic amplitude: As shown in
Fig. 9(c), the tensile-normalized axial deformation was initially
εn ¼ 1.0%; the half-amplitudes of 0.1, 0.5, and 1.0% were then
induced around the center of εn ¼ 1.0% for three cycles each
followed by the final amplitude until brace fracture.

4. Random cyclic amplitude: As shown in Fig. 9(d), random am-
plitudes of 0.1–1.0% were induced with normalized axial de-
formation. The process shown in Fig. 9(d) was defined as one
set, and the same set was repeated until brace fracture.

Figs. 10(a–d) show the εn–σn relationships obtained from the
tests on the circular-tube braces, and Figs. 11(a–d) show those
of the H-section braces. Table 2 lists the amplitudes and the num-
bers of cycles at which the braces experienced overall buckling,
local buckling, cracking, and fracture. The circled numbers for
random cyclic amplitude mean the step number indicated in the
Fig. 9. With gradually increasing amplitudes, both braces experi-
enced overall buckling during the first excursion to εn ¼ 0.5%.
Local buckling occurred at εn ¼ 1.0% in the circular tube and
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Fig. 10. Experimentally determined force–deformation relationships of circular tube braces (P728): (a) gradually increasing; (b) gradually decreas-
ing; (c) eccentrically increasing; (d) random
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εn ¼ 0.5% in the H-section. However, the H-section survived until
the fifth cycle of εn ¼ 2.0%, whereas the circular tube fractured
at the first cycle of εn ¼ 2.0%. Table 3 lists the values of cumu-
lative normalized axial deformations until fracture. The circular
tube brace fractured at the smallest value of cumulative deforma-
tion under the gradually decreasing loading history, whereas the
H-section brace failed at the smallest cumulative deformation under
the gradually increasing loading history. Fig. 12 shows the typical
shape of local buckling and fracture in each specimen. All fractures
initiated from the corner of the local buckling, as assumed in the
previous section. It has been pointed out in past research that the

cumulative deformation capacities until fractures for open-section
braces as H-braces are larger than those of closed sections as
circular-hollow sections. The above results indicate that the
H-section braces had greater cumulative normalized axial deforma-
tion values than the circular braces in all cases.

FEM Analysis of Cyclic Loading Tests on Braces

The behaviors of the circular-tube and H-section braces after local
buckling were simulated using ABAQUS (version 6.7-1), an FEM
analysis software package, for determining the local strain distri-
butions. Fig. 13 shows the analysis models. Each brace was com-
posed of shell finite elements including connections. Each element
contained four nodes and three shell layers with seven integral
points in the thickness direction to evaluate the surface plastic strain
at local buckling zones. Material characteristics were calibrated
based on the results of tension coupon tests. An overall hardening
rule involving isotropic and kinematic hardening was adopted.
Fig. 14 shows that the analytically obtained εn − σn hysteresis
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Fig. 11. Experimentally determined force–deformation relationships of circular tube braces (H710): (a) gradually increasing; (b) gradually
decreasing; (c) eccentrically increasing; (d) random

Table 2. Results of Each Loading Test

Specimen Loading history Global buckling Local buckling Crack Fracture

P728 Gradually increasing 1st cycle at 0.5% 1st cycle at 1.0% 1st cycle at 2.0% 1st cycle at 2.0%
Gradually decreasing 1st cycle at 1.0% 1st cycle at 1.0% 2nd cycle at 0.75% 2nd cycle at 0.5%

Eccentrically increasing 1st cycle at 0.5% 2nd cycle at 1.0% 5th cycle at 1.0% 5th cycle at 1.0%
Random cycle ③ in 1st set cycle ⑤ in 1st set cycle ② in 2nd set cycle ② in 2nd set

H710 Gradually increasing 1st cycle at 0.5% 2nd cycle at 0.5% 3rd cycle at 2.0% 5th cycle at 2.0%
Gradually decreasing 1st cycle at 1.0% 1st cycle at 1.0% 21th cycle at 0.5% 37th cycle at 0.5%

Eccentrically increasing 1st cycle at 0.5% 2nd cycle at 0.5% 10th cycle at 1.0% 10th cycle at 1.0%
Random cycle ③ in 1st set cycle ③ in 1st set cycle ⑫ in 3rd set cycle ⑫ in 3rd set

Table 3. Cumulative Normalized Deformation until Fracture (%)

Specimen

Loading history

Gradually
increasing

Gradually
decreasing

Eccentrically
increasing Random

P728 24.52 17.55 44.36 30.21
H710 42.22 62.57 66.63 64.6
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curves were nearly consistent with the experimental results. Fig. 15
shows the comparison of local plastic strain transitions at local
buckling zones obtained from FEM analyses with measured strain
near the local buckling zones in experiments, which shows the sim-
ilar tendency. Plastic-strain transitions Fig. 16 show the local out-
of-plane deflection and local strain distribution at the local buckling
zone in each specimen together with the local deformation distri-
bution at εn ¼ 2.0–3.0%. In the figures, the local strain-distribution
values calculated using Eqs. (1) and (13) are plotted as dotted lines.
The local strain values predicted using the proposed equations gen-
erally agreed with the maximum values obtained from the FEM
analysis, regardless of the loading history. The local strain-amplitude
transitions along each loading history as obtained in the FEM analy-
sis are shown in Fig. 18 using black circles, where Figs. 18(a–d)
represent the circular tube braces and Figs. 18(e–h) represent the
H-section braces. The local strain amplitudes assessed using Eqs. (1)
and (13) are represented by solid lines in Fig. 17. In all specimens,
the increases in the local strain amplitudes after the occurrence of
local buckling according to the proposed formulas were generally
consistent with the strain transitions obtained in the FEM analysis.

Fig. 12. Local buckling and fracture processes: (a) local buckling of circular tube brace; (b) fracture of circular tube brace; (c) local buckling of
H-section brace; (d) flange fracture of H-section brace

(a)

(b) (c)

Fig. 13. FEM analysis models: (a) circular tubular brace; (b) H-section
brace; (c) shell element
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Fig. 14. Comparison of hysteresis between analyses and experiments: (a) gradually increasing (P728); (b) eccentrically increasing (H710)
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Fig. 15. Comparison of local strain between analyses and experiments: (a) gradually increasing (P728); (b) gradually increasing (H710)
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Fig. 18 plots the cumulative local plastic strain and the average
plastic strain at the local buckling zone, which were calculated from
the analyses until the instant of fracture in the experiment. The solid
line denotes the low-cycle fatigue curve of the material [JIS SS400

(JIS 2010); Saeki et al. 1995], whose triaxial stress conditions are
similar as the stress at local buckling zones, and the moment
of fracture may be determined from the fatigue curves. This
means that the braces fracture at the moment when the evaluated
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cumulative local strain reaches the fatigue curves of the material.
The moment of fracture is considered as the instant at which the
cumulative local plastic strain, estimated as the product of the
normalized axial deformation and the strain-concentration ratio
obtained using the proposed formulas, reaches the low-cycle
fatigue curve. Fig. 19 compares the normalized cumulative dissi-
pation energy χ ¼ P

σnðΔεn − 2εyÞ=σy until fracture obtained
using the proposed method and with that obtained from the exper-
imental results. Here, σy denotes yield stress. Although the pro-
posed method showed the errors of twice smaller in maximum
in some amplitudes for H-sections, all other results generally agreed
well for all loading histories; therefore, the proposed method is con-
sidered to be valid for not only gradually increasing loading ampli-
tudes but also for other types of amplitudes.

Conclusion

A simple method for assessing the cumulative deformation
capacities of circular-tube and H-section braces until fracture under
cyclic loadings using physical macro models is proposed. A series
of cyclic-loading tests was carried out on these braces under not
only gradually increasing amplitudes but also various loading
histories. The fracture mechanism was clarified by FEM analysis,
and the strain-concentration ratios and cumulative deformation
capacities until fracture assumed in the proposed formulas were
compared with the experimental results. The obtained conclusions
are summarized as follows:
1. Both braces underwent overall buckling at the half amplitudes

of the normalized axial deformation of εn ¼ 0.5%, and local
buckling occurred at εn ¼ 1.0% in the circular tube and εn ¼
0.5% in the H-section. The H-section fractured during the fifth
cycle of εn ¼ 2.0%, whereas the circular tube fractured during
the first εn ¼ 2.0% cycle. Generally, the H-section braces sur-
vived longer than the circular-tube braces. Among all loading
histories, the circular-tube brace fractured at the smallest
values of cumulative deformation under the gradually decreas-
ing loading history, whereas the H-section brace fractured
at the smallest cumulative deformation under the gradually
increasing loading history.

2. The FEM results indicated that plastic strain intensely in-
creased in the strain-concentration region after local buckling,
and the local strain reached 15–30%, thus leading to brace
fracture.

3. The strain concentration ratio index was used for introducing a
method to evaluate the cumulative deformation capacities of
the circular-tube and H-section braces until fracture. The local
strain amplitudes at the fracture point in FEM analyses were
generally consistent with the values assumed by the proposed
formulas for all types of loading histories.

4. The moment of fracture and the energy dissipated until frac-
ture predicted by the proposed method agreed well with the
test results for all types of loading histories, and the use of
the proposed method for estimating the moment of fracture
regardless of the loading pattern was validated.

With this methodology, brace fracture after buckling can be
predicted easily using phenomenological macro model analyses,
including postbuckling hysteresis. Post brace-fracture analysis of
CBFs is also possible by eliminating the fractured braces in the
time–history process. Post brace-fracture analyses of actual struc-
tures damaged by past earthquakes are being carried out, and the
validity of the proposed fracture-evaluation method is being
confirmed; this will be reported in future papers.

Appendix. Postbuckling Hysteresis Model by
Shibata–Wakabayashi

Detailed formulas of the Shibata–Wakabayashi model proposed
by Shibata (1982), shown in Fig. 1, are described in the follow-
ing. In the figure, Δ denotes the normalized axial deformation
(εn in the text), Δy denotes the yield-normalized axial deforma-
tion (εy in the text), n denotes the normalized axial force by ny,
and ny denotes the yield axial force. Point A is the tension yield
critical point, B is the compression-buckling critical point, P is
the partial tensile-yielding critical point, and Q is the release point
following the buckling path. The normalized axial force, n, for
the relevant stage is given by Eq. (15), and the related parameters
in Eq. (15) are obtained using Eqs. (16)–(20). Furthermore, modi-
fication formulas expressing the degradation of buckling force
under cyclic hysteresis are proposed and confirmed for accurately
representing postbuckling behavior, including elasto-plastic
buckling

n ¼

8>>>>>>><
>>>>>>>:

1 ½StageA�
ftðΔA −ΔÞ ½StageB�
−fcðΔB þ nc −ΔÞ ½StageC�

np þ
ðΔ −ΔPÞðnP − nQÞ

ΔP −ΔQ
½StageD�

ð15Þ

fcðXÞ ¼ ðp1X þ p2Þ−0.5 ð16Þ

ftðXÞ ¼ ðp3X þ 1Þ−1.5 ð17Þ

p1 ¼
�
10λ2σy

3π2E
− 1

3

�
ð18Þ

p2 ¼
�
4λ2σy

π2E
þ 0.6

�
ð19Þ

p3 ¼ 1
.�

3.1π2E
λ2σy

þ 1.4

�
ð20Þ

where λi = slenderness ratio of the brace; and nc =
solution of Eq. (21).

p1n3c þ p2nc − 1 ¼ 0 ð21Þ

In the case that the stage changes, the reference points A, B, P,
and Q are defined with the following equations.

[Release in Stage A]

ΔA
new ¼ ΔP

old ¼ Δ nPnew ¼ 1

ΔB
new ¼ ΔQ

new ¼ Δ − 1 − nc nQnew ¼ −nc ð22Þ

[Release in Stage B]

ΔB
new ¼ ΔB

old þ ðΔA
old − 1 − nc −ΔB

oldÞ
Δ −ΔP

old

ΔA
old −ΔP

old

ΔP
new ¼ Δ nPnew ¼ n ΔQ

new ¼ ΔB
new − ðΔA

new −ΔÞ
q3

nQnew ¼ −fcðΔB
new þ nc −ΔQ

newÞ ð23Þ
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q3 ¼ 0.3
ffiffiffiffiffiffi
nE

p þ 0.24 nE ¼ π2E
λ2σy

ðEuler buckling stressÞ

ð24Þ
[Release in Stage C]

ΔA
new ¼ ΔA

old þ ln½q1ðΔQ
old −ΔÞ þ 1� − q2ðΔB

old −ΔQ
oldÞ ≥ ΔA

old

ΔQ
new ¼ Δ nQnew ¼ n ΔP

new ¼ ΔA
new − q3ðΔB

old −ΔÞ
nPnew ¼ ftðΔA

new −ΔP
newÞ ð25Þ

q1 ¼
�
3 − 1

nE

��
10 q2 ¼

0.115
nE

þ 0.36 ð26Þ

Notation

The following symbols are used in this paper:
A = original sectional area;
B = width of H-section;
D = circular tube diameter;
E = elastic modulus of steel;

LB = distance between plastic hinges on both gusset plates;
Lk = effective plastic buckling length of brace;
Lh = plastic hinge zone length;
lp = local buckling wavelength;
lpk = effective plastic local buckling wavelength;

Mpb = yield bending moment of brace;
Mpg = yield bending moment of gusset plate;
Nf = number of cycles to steel fracture;
P = axial force on brace;
S = section modulus of brace (weak axis of H-section);
Sl = section modulus of local buckling zone;
tf = thickness of circular tube or H-section flange;
Z = plastic section modulus of brace (weak axis of

H-section);
Zl = plastic section modulus of local buckling zone;
αc = strain concentration ratio;

Δεh = local strain amplitude in hinge zone strain;
Δεn = normalized axial deformation amplitude;
Δθh = incremental angle of hinge zone that influences local

buckling;
Δεhp = average plastic strain amplitude in hinge zone;

Δ = axial displacement of brace;
εcr = overall buckling strain (σcr=E);
εn = normalized axial deformation;

εntm = maximum tensile-normalized axial deformation;
εh = local strain in hinge zone;
εhp = local plastic strain in hinge zone;
εlb = equivalent strain attain to local buckling;
εy = yield strain;
θh = angle of hinge zone;
θlb = angle of plastic hinge due to local buckling;P

Δεhp = cumulative plastic strain in hinge zone;
σcr = overall buckling stress;
σn = normalized stress;

σy = yield stress;
ϕ = vertical angle of local buckling wave (H-section); and
φh = angle of skin plate at local buckling zone.
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